Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-12-05T02:33:15.314Z Has data issue: false hasContentIssue false

Confocal laser scanning microscopy and Raman imagery of the late Neoproterozoic Chichkan microbiota of South Kazakhstan

Published online by Cambridge University Press:  11 August 2017

J. William Schopf
Affiliation:
Department of Earth and Space Sciences and Molecular Biology Institute, University of California, Los Angeles 90095, Institute of Geophysics and Planetary Physics (Center for the Study of Evolution and the Origin of Life), University of California, Los Angeles 90095, and PennState Astrobiology Research Center, 435 Deike Building, University Park, PA 16802
Anatoliy B. Kudryavtsev
Affiliation:
Institute of Geophysics and Planetary Physics (Center for the Study of Evolution and the Origin of Life), University of California, Los Angeles 90095, and PennState Astrobiology Research Center, 435 Deike Building, University Park, PA 16802
Vladimir N. Sergeev
Affiliation:
Geological Institute, Russian Academy of Sciences, Pyzhevskii per., 7, Moscow, 119017, Russia

Abstract

Precambrian microbiotas, such as that permineralized in bedded and stromatolitic cherts of the late Neoproterozoic, 750- to 800-Ma-old, Chichkan Formation of South Kazakhstan, have traditionally been studied by optical microscopy only. Such studies, however, are incapable of documenting accurately either the three-dimensional morphology of such fossils or their chemical composition and that of their embedding minerals. As shown here by analyses of fossils of the Chichkan Lagerstätte, the solution to these long-standing problems is provided by two techniques recently introduced to paleontology: confocal laser scanning microscopy (CLSM) and Raman imagery. The two techniques are used together to characterize, in situ and at micron-scale resolution, the cellular and organismal morphology of the thin section-embedded organic-walled Chichkan fossils. In addition, Raman imagery is used to analyze the molecular-structural composition of the carbonaceous fossils and of their embedding mineral matrix, identify the composition of intracellular inclusions, and quantitatively assess the geochemical maturity of the Chichkan organic matter.

CLSM and Raman imagery are both broadly applicable to the study of fossils, whether megascopic or microscopic and regardless of mode of preservation, and both are non-intrusive and non-destructive, factors that permit their use for analyses of archived specimens. They are especially useful for the study of microscopic fossils, as is demonstrated in this first in-depth study of diverse taxa of a single Precambrian microbiota for which they provide information in three dimensions at high spatial resolution about their organismal morphology, cellular anatomy, kerogenous composition, mode of preservation, and taphonomy and fidelity of preservation.

Type
Research Article
Copyright
Copyright © 2010, The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amos, W. B. and White, J. G. 2003. How the confocal laser scanning microscope entered biological research. Biology of Cells, 95: 335342.Google Scholar
Arouri, K.R., Greenwood, P. F., and Walter, M. R. 2000. Biological affinities of Neoproterozoic acritarchs from Australia: Microscopic and chemical characterization. Organic Geochemistry, 31: 7589.Google Scholar
Barghoorn, E. S. and Schopf, J. W. 1965. Microorganisms from the late Precambrian of central Australia. Science, 150: 337339.CrossRefGoogle ScholarPubMed
Barghoorn, E. S. and Tyler, S. A. 1965. Microorganisms from the Gunflint chert. Science, 147: 563577.CrossRefGoogle ScholarPubMed
Birkmann, H. and Lundin, R. H. 1996. Confocal microscopy: Potential applications in micropaleontology. Journal of Paleontology, 70: 10841087.CrossRefGoogle Scholar
Chen, J-Y., Schopf, J. W., Bottjer, D. J., Zhang, C-Y., Kudryavtsev, A. B., Tripathi, A. B., Wang, X-Q., Yang, Y-H., Gao, X., and Yang, Y. 2007. Raman spectra of a ctenophore embryo from southwestern Shaanxi, China. Proceedings of the National Academy of Science USA, 104: 62896292.Google Scholar
Cloud, P. E. Jr. 1965. Significance of the Gunflint (Precambrian) microflora. Science, 148: 2745.CrossRefGoogle ScholarPubMed
Drews, G. 1973. Fine structure and chemical composition of the cell envelopes, p. 99116. In Carr, N. G., and Whitton, B. A. (eds.), The Biology of Blue-Green Algae, Botanical Monographs, Vol. 9. University of California Press, Berkeley, CA.Google Scholar
Feist-Burkhardt, S. and Monteil, E. 2001. Gonyaulacacean dinoflagellate cysts with multi-plate precingular archaeopyle. Neues Jarbuch für Geologie und Palaeontolgie Abhandlungen, 219: 3381.CrossRefGoogle Scholar
Feist-Burkhardt, S. and Pröss, J. 1999. Morphological analysis and description of middle Jurassic dinoflagellate cyst marker species using confocal laser scanning microscopy, digital optical microscopy and conventional light microscopy. Bulletin of the Centre for Recherche of the Elf Explorer [1998], 22: 103145.Google Scholar
Foster, B., Williams, V. E., Witmer, R. J., and Piel, K. M. 1990. Confocal microscopy: a new technique for imaging micro-organisms and morphology in three-dimensions. Palynology, 14: 212 (abstract).Google Scholar
Gaft, M., Reisfeld, R., and Panczerer, G. 2005. Modern Luminescence Spectroscopy of Minerals and Materials. Springer, Berlin.Google Scholar
Grey, K. 2005. Ediacaran palynology of Australia. Association of Australasian Palaeontologists Memoir 31, 439 p.Google Scholar
Hochuli, P. and Feist-Burkhardt, S. 2004. An early boreal cradle of Angiosperms? Angiosperm-like pollen from the Middle Triassic of the Barents Sea (Norway). Journal of Micropalaeontology, 23: 97104.Google Scholar
Hofmann, H. J., and Schopf, J. W. 1983. Early Proterozoic microfossils. In Schopf, J. W. (ed.), Earth's Earliest Biosphere, Its Origin and Evolution. Princeton University Press, Princeton, NJ.Google Scholar
House, C. H., Schopf, J. W., McKeegan, K. D., Coath, C. D., Harrison, T. M., and Stetter, K. O. 2000. Carbon isotopic composition of individual Precambrian microfossils. Geology, 28: 707710.Google Scholar
Hunt, J. M. 1996. Petroleum Geochemistry and Geology, Second Edition. W. H. Freeman, New York.Google Scholar
Igisu, M., Ueno, Y., Shimojima, M., Nakashima, S., Awramik, S. M., Ohta, H., and Maruyama, S. 2009. Micro-FTIR spectroscopic signatures of Bacterial lipids in Proterozoic microfossils. Precambrian Research, 173: 1926.Google Scholar
Jehlicka, J. and Beny, C. 1992. Application of Raman microspectrometry in the study of structural changes in Precambrian kerogens during regional metamorphism. Organic Geochemistry, 18: 211213.CrossRefGoogle Scholar
Jehlička, J., Urban, A., and Pokorny, J. 2003. Raman spectroscopy of carbon and solid bitumens in sedimentary and metamorphic rocks. Spectrochimica Acta, A59: 23412352.CrossRefGoogle Scholar
Kelemen, S. R. and Fung, H. L. 2001. Maturity trends in Raman spectra from kerogen and coal. Energy and Fuels, 15: 653658.CrossRefGoogle Scholar
Knoll, A. H., and Golubic, S. 1979. Anatomy and taphonomy of a Precambrian algal stromatolite. Precambrian Research, 10: 115151.CrossRefGoogle Scholar
Knoll, A. H., Barghoorn, E. S., and Golubic, S. 1975. Paleopleurocapsa wopfneri gen. et sp. nov.: A late Precambrian alga and its modern counterpart. Proceedings of the National Academy of Sciences USA, 72: 24882492.Google Scholar
Kudryavtsev, A. B., Schopf, J. W., Agresti, D. G., and Wdowiak, T. J. 2001. In situ laser-Raman imagery of Precambrian microscopic fossils. Proceedings of the National Academy of Sciences USA, 98: 823826.Google Scholar
McKeegan, K. D., Kudryavtsev, A. B., and Schopf, J. W. 2007. Raman and ion microscopic imagery of graphite inclusions in apatite from older than 3830 Ma Akilia supracrustal rocks, west Greenland. Geology, 35: 591594.Google Scholar
McMillan, P. F. and Hofmeister, A. M. 1988. Infrared and Raman spectroscopy. Reviews of Mineralogy, 18: 99159.Google Scholar
Mendelson, C. V. and Schopf, J. W. 1992. Proterozoic and selected Early Cambrian microfossils and microfossil-like objects, p. 865951. In Schopf, J. W. and Klein, C. (eds.), The Proterozoic Biosphere, A Multidisciplinary Study. Cambridge University Press, NY.Google Scholar
Mus, M. M. and Moczydlowska, M. 2000. Internal morphology and taphonomic history of the Neoproterozoic vase-shaped microfossils from Visingsö Group, Sweden. Norsk Geologisk Tidsskrift, 80: 213228.Google Scholar
Nagy, L. A. 1974. Transvaal stromatolite: first evidence for the diversification of cells about 2.2×109 years ago. Science, 183: 514516.CrossRefGoogle Scholar
Nagy, L. A. 1978. New filamentous and cystous microfossils, 2,300 M.Y. old, from the Transvaal sequence. Journal of Paleontology, 52: 141154.Google Scholar
NIX, T. and Feist-Burkhardt, S. 2003. New methods applied to the microstructure analysis of Messel Oil shale: Confocal Laser Scanning Microscopy (CLSM) and Environmental Scanning Electron Microscopy (ESEM). Geological Magazine, 140: 469478.Google Scholar
O'Conner, B. 1996. Confocal laser scanning microscopy: A new technique for investigating and illustrating fossil Radiolaria. Micropaleontology, 42: 395402.Google Scholar
Pankratz, H. S. and Bowen, C. C. 1963. Cytology of blue-green algae. I. The cells of Symploca muscorum. American Journal of Botany 50: 387399.Google Scholar
Pasteris, J. D. and Wopenka, B. 1991. Raman spectra of graphite as indicators of degree of metamorphism. Canadian Mineralogist, 29: 19.Google Scholar
Pasteris, J. D. and Wopenka, B. 2003. Necessary, but not sufficient: Raman identification of disordered carbon as a signature of ancient life. Astrobiology, 3: 727738.CrossRefGoogle Scholar
Peters, K. E., Ishiwatari, K., and Kaplan, I. R. 1977. Color of kerogen as index of organic maturity. Bulletin of the American Association of Petroleum Geologists, 64: 504510.Google Scholar
Schopf, J. W. 1968. Microflora of the Bitter Springs Formation, Late Precambrian, central Australia. Journal of Paleontology, 42: 651688.Google Scholar
Schopf, J. W. 1992. Paleobiology of the Archean, p. 2539. In Schopf, J. W. and Klein, C. (eds.), The Proterozoic Biosphere: A Multidisciplinary Study. Cambridge University Press, New York.CrossRefGoogle Scholar
Schopf, J. W. 1993. Microfossils of the Early Archean Apex chert: New evidence of the antiquity of life. Science 260: 640646.Google Scholar
Schopf, J. W. 1999. Cradle of Life, The Discovery of Earth's Earliest Fossils. Princeton University Press, Princeton, NJ, 367 p.CrossRefGoogle Scholar
Schopf, J. W. 2006a. Fossil evidence of Archaean life. Philosophical Transactions of the Royal Society of London B 361: 869885 Google Scholar
SCHOPF, J. W. 2006b. The first billion years: When did life emerge? Elements 2: 299–233.Google Scholar
Schopf, J. W. and Blacic, J. M. 1971. New microorganisms from the Bitter Springs Formation (Late Precambrian) of the north-central Amadeus Basin, Australia. Journal of Paleontology, 45: 925961.Google Scholar
Schopf, J. W. and Bother, D. J. 2009. World summit on ancient microscopic fossils. Precambrian Research, 173: 13.Google Scholar
Schopf, J. W. and Kudryavtsev, A. B. 2005. Three-dimensional Raman imagery of Precambrian microscopic organisms. Geobiology, 3: 112.Google Scholar
Schopf, J. W. and Kudryavtsev, A. B. 2009. Confocal laser scanning microscopy and Raman imagery of ancient microscopic fossils. Precambrian Research, 173: 3949.Google Scholar
Schopf, J. W. and Walter, M. R. 1983. Archean microfossils: New evidence of ancient microbes, p. 214239. In Schopf, J. W. (ed.), Earth's Earliest Biosphere, Its Origin and Evolution. Princeton University Press, Princeton, NJ.Google Scholar
Schopf, J. W., Kudryavtsev, A. B., Agresti, D. G., Wdowiak, T. J., and Czaja, A. D. 2002. Laser-Raman imagery of Earth's earliest fossils. Nature, 416: 7376.CrossRefGoogle ScholarPubMed
Schopf, J. W., Kudryavtsev, A. B., Agresti, D. G., Czaja, A. D., and Wdowiak, T. J. 2005. Raman imagery: A new approach to assess the geochemical maturity and biogenicity of permineralized Precambrian fossils. Astrobiology, 5: 333371.Google Scholar
Schopf, J. W., Tripathi, A. B., and Kudryavtsev, A. B. 2006. Three-dimensional optical confocal imagery of Precambrian microscopic organisms. Astrobiology, 1: 116.Google Scholar
Schopf, J. W., Kudryavtsev, A. B., Czaja, A. D., and Tripathi, A. B. 2007. Evidence of Archean life: Stromatolites and microfossils. Precambrian Research, 158: 141155.Google Scholar
Schopf, J. W., Tewari, V. C., and Kudryatsev, A. B. 2008. Discovery of a new chert-permineralized microbiota of the Proterozoic Buxa Formation of the Ranjit Window, Sikkim, N.E. India, and its astrobiological implications. Astrobiology, 8: 735746.CrossRefGoogle Scholar
Schopf, J. W., Kudryavtsev, A. B., Tripathi, A. B., and Czaja, A. D. in press. Three-dimensional morphological (CLSM)and chemical (Raman) imagery of permineralized fossils. In Allison, P. A. and Bottjer, D. J. (eds.), Taphonomy: Process and Bias Through Time. Springer-Verlag, Heildelberg, Berlin.Google Scholar
Scott, A. C. and Hemsley, A. R. 1990. A comparison of new microscopical techniques for the study of fossil spore wall ultrastructure. Revrews of Palaeobotany and Palynology, 67: 133139.CrossRefGoogle Scholar
Sergeev, V. N. and Schopf, J. W. 2010. Taxonomy, paleoecology and biostratigraphy of the late Neoproterozoic Chichkan microbiota of South Kazakhstan: The marine biosphere on the eve of metazoan radiation. Journal of Paleontology, 84: 363401.Google Scholar
Spötl, C., Houseknecht, D. W., and Jaques, R. C. 1998. Kerogen maturation and incipient graphitization of hydrocarbon source rocks in the Arkoma Basin, Oklahoma and Arkansas: A combined petrographic and Raman study. Organic Geochemistry, 28: 535542.CrossRefGoogle Scholar
Talyzina, N. M. 1997. Fluorescence intensity in early Cambrian acritarchs from Estonia. Review of Palaeobotany and Palynology, 100: 99108.Google Scholar
Taylor, P. D., Schopf, J. W., and Kudryavtsev, A. B. 2008. Calcite and aragonite in the skeletons of bimineralic bryozoans as revealed by Raman spectroscopy. Invertebrate Biology, 127: 8797.Google Scholar
Vidal, G., 1981. Micropalaeontology and Biostratigraphy of the Upper Proterozoic and Lower Cambrian Sequence in East Finnmark, Northern Norway. Norges Geol. Undersøkelse, 362: 153.Google Scholar
Williams, K. P. J., Nelson, J., and Dyer, S. 1997. The Renishaw Raman Database of Gemological and Mineralogical Materials. Renishaw Tranducers Systems Division, Gloucestershire, England, 107 + A1-Z5 p.Google Scholar
Wopenka, B. and Pasteris, J. D. 1993. Structural characterization of kerogens to granulite-facies graphite: Applicability of Raman microprobe spectroscopy. American Mineralogist, 78: 533557.Google Scholar
Yui, T-F., Huang, E., and Xu, J. 1996. Raman spectrum of carbonaceous material: A possible metamorphic grade indicator for low-grade metamorphic rocks. Journal of Metamorphic Geology, 14: 115124.Google Scholar