Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-30T22:53:19.492Z Has data issue: false hasContentIssue false

The choanal anatomy of the Sebecus icaeorhinus Simpson, 1937 and the variation of the palatine shape in notosuchians (Crocodyliformes, Mesoeucrocodylia)

Published online by Cambridge University Press:  17 June 2022

Gonzalo Gabriel Bravo*
Affiliation:
CONICET, Instituto Superior de Correlación Geológica, Av. Presidente Perón S/N, Yerba Buena CP 4107, Tucumán, Argentina
Diego Pol
Affiliation:
CONICET, Museo Paleontológico Egidio Feruglio, Av. Fontana 140, Trelew CP9100, Chubut, Argentina
Matías Alberto Armella
Affiliation:
CONICET, Instituto Superior de Correlación Geológica, Av. Presidente Perón S/N, Yerba Buena CP 4107, Tucumán, Argentina Facultad de Ciencias Naturales e IML, Instituto de Estratigrafía y Geología Sedimentaria Global (IESGLO-CONICET), Universidad Nacional de Tucumán, Miguel Lillo 205, San Miguel de Tucumán CP4000, Argentina. Catedra de Paleontología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Catamarca, Av. Belgrano 300, San Fernando del Valle de Catamarca CP4700, Catamarca, Argentina
Kevin Gómez
Affiliation:
CONICET, Museo Paleontológico Egidio Feruglio, Av. Fontana 140, Trelew CP9100, Chubut, Argentina
*
*Corresponding author.

Abstract

Sebecidae is a clade of large carnivorous crocodyliforms that thrived in the Cenozoic and is the only lineage of the diverse and terrestrial group Notosuchia that survived the end-Cretaceous mass extinction event. Sebecus icaeorhinus is the best-known taxon from this clade, both in terms of its cranial and postcranial anatomy (known primarily from the holotype and specimen MPEF-PV 1776, respectively). Additional material represented by a partial skull (MMP 235) is the only specimen that has preserved a complete choanal region. We describe new information from this specimen based on an X-ray computed tomography and identify through comparisons with other taxa a large degree of variability in the palatal anatomy within Sebecidae, in particular in the shape and extension of the palatine (the bone that defines the anterior position and shape of the secondary choana). We quantify variation in the shape of the palatine bone of sebecids through a 2D morphogeometric analysis within the context of notosuchian crocodyliforms. Although traditional accounts of palatal evolution in crocodyliforms linked variation of this structure to the adaptation to the aquatic environment, our analysis allows recognition of eight palatine morphotypes among terrestrial crocodyliforms with very distinct paleoecological traits, including carnivorous, omnivorous, and possibly herbivorous taxa. Furthermore, we show that sebecids had a higher morphological disparity in the choanal region than other terrestrial groups of Notosuchia, underscoring the importance of this region for comparative, morphofunctional, and phylogenetic studies.

Type
Articles
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adler, D., Murdoch, D., Nenadic, O., Urbanek, S., Chen, M., et al. , 2021, rgl: 3D Visualization Using OpenGL. R package version 0.104.16: https://CRAN.R-project.org/package=rgl.Google Scholar
Andrade, M.B., and Bertini, R.J., 2008, A new Sphagesaurus (Mesoeucrocodylia: Notosuchia) from the Upper Cretaceous of Monte Alto City (Bauru Group, Brazil), and a revision of the Sphagesauridae: Historical Biology, v. 20, p. 101136.CrossRefGoogle Scholar
Andrade, M.B., Bertini, R.J., and Pinheiro, A.E.P., 2006, Observations on the palate and choanae structures in Mesoeucrocodylia (Archosauria, Crocodylomorpha): phylogenetic implications: Revista Brasileira de Paleontologia, v. 9, p. 323332.CrossRefGoogle Scholar
Antunes, M.T., 1975, Iberosuchus, crocodile sebecosuchien nouveau, l'Eocène ibérique au nord de la Chaîne central, et l'origine du canyon de Nazare: Comunicaçoes dos Servicos Geologicos de Portugal, v. 59, p. 285330.Google Scholar
Ballell, A., Moon, B.C., Porro, L.B., Benton, M.J., and Rayfield, E.J., 2019, Convergence and functional evolution of longirostry in crocodylomorphs: Palaeontology, v. 62, p. 867887.CrossRefGoogle Scholar
Bravo, G.G., Pol, D., and García-López, D.A., 2021, A new sebecid mesoeucrocodylian from the Paleocene of northwestern Argentina: Journal of Vertebrate Paleontology, v. 41, e1979020. https://doi.org/10.1080/02724634.2021.1979020.CrossRefGoogle Scholar
Buffetaut, E., 1981, Die biogeographische Geschichte der Krokodilier, mit Beschreibung einer neuen Art, Araripesuchus wegeneri: Geologische Rundschau, v. 70, p. 611624.CrossRefGoogle Scholar
Buffetaut, E., 1989, A new ziphodont mesosuchian crocodile from the Eocene of Algeria: Palaeontographica A, v. 208, p. 110.Google Scholar
Buffetaut, E., 1994, A new crocodilian from the Cretaceous of southern Morocco: Comptes Rendus de l'Academie des Sciences, Serie II, v. 319, p. 15631568.Google Scholar
Buffetaut, E., and Ingavat, R., 1980, A new crocodilianfrom the Jurassic of Thailand, Sunosuchus thailandicus n. sp. (Mesosuchia, Goniopholididae), and the palaeogeographical history of South-East Asia in the Mesozoic: Geobios, v. 13, p. 879889.CrossRefGoogle Scholar
Buffetaut, E., and Marshall, L.G., 1991, A new crocodilian, Sebecus querejazus, nov. sp. (Mesosuchia, Sebecidae) from the Santa Lucia Formation (Early Paleocene) at Vila Vila, Southern Bolivia: Revista Técnica de Yacimientos Petrolíferos Fiscales Bolivianos, v. 12, p. 545557.Google Scholar
Busbey, A.B. III, 1995, The structural consequences of skull flattening in crocodilians, in Thomason, J.J., ed., Functional Morphology in Vertebrate Paleontology: New York, Cambridge University Press, p. 173192.Google Scholar
Campos, D.A., Suarez, J.M., Riff, D., and Kellner, A.W.A., 2001, Short note on a new Baurusuchidae (Crocodyliformes, Metasuchia) from the Upper Cretaceous of Brazil: Boletim do Museu Nacional, Geologia, v. 57, p. 17.Google Scholar
Carvalho, I.S., and Bertini, R.J., 1999, Mariliasuchus, um novo Crocodylomorpha (Notosuchia) do Cretáceo da Bacia Bauru, Brasil: Geologia Colombiana, v. 24, p. 83105.Google Scholar
Carvalho, I.S., Campos, A.D.C.A., and Nobre, P.H., 2005, Baurusuchus salgadoensis, a new crocodylomorpha from the Bauru Basin (Cretaceous), Brazil: Gondwana Research, v. 8, p. 1130.CrossRefGoogle Scholar
Carvalho, I.S., Vasconcellos, F.M.d., and Tavares, S.A.S., 2007, Montealtosuchus arrudacamposi, a new peirosaurid crocodile (Mesoeucrocodylia) from the Late Cretaceous Adamantina Formation of Brazil: Zootaxa, v. 1607, p. 3546.CrossRefGoogle Scholar
Charrad, M., Ghazzali, N., Boiteau, V., and Niknafs, N., 2014, NbClust: an R package for determining the relevant number of clusters in a data set: Journal of Statistical Software, v. 61, p. 136.CrossRefGoogle Scholar
Clark, J.M., 1986, Phylogenetic Relationships of the Crocodylomorph Archosaurs [Ph.D. dissertation]: University of Chicago, Chicago, Illinois, 556 p.Google Scholar
Clark, J.M., and Norell, M.A., 1992, The Early Cretaceous crocodylomorph Hylaeochampsa vectiana from the Wealden of the Isle of Wight: American Museum Novitates, v. 3032, p. 119.Google Scholar
Clark, J.M., Jacobs, L.L., and Downs, W.R., 1989, Mammal-like dentition in a Mesozoic crocodilian: Science, v. 244, p. 10641066.CrossRefGoogle Scholar
Colbert, E.H., 1946, Sebecus, representative of a peculiar suborder of fossil Crocodilia from Patagonia: Bulletin of the American Museum of Natural History, v. 87, p. 217270.Google Scholar
Dollman, K.N., Clark, J.M., Norell, M.A., Xing, X., and Choiniere, J.N., 2018, Convergent evolution of a eusuchian-type secondary palate within Shartegosuchidae: American Museum Novitates, v. 3901, p. 123.CrossRefGoogle Scholar
Dufeau, D.L., and Witmer, L.M., 2015, Ontogeny of the middle-ear air-sinus system in Alligator mississippiensis (Archosauria: Crocodylia): PLoS ONE, v. 10, e0137060. https://doi.org/10.1371/journal.pone.0137060.CrossRefGoogle ScholarPubMed
Fiorelli, L.E., and Calvo, J., 2008, New remains of Notosuchus terrestris Woodward, 1896 (Crocodyliformes: Mesoeucrocodylia) from the Late Cretaceous of Neuquén, Patagonia, Argentina: Arquivos do Museu Nacional Rio de Janeiro, v. 66, p. 83124.Google Scholar
Gasparini, Z.B., 1972, Los Sebecosuchia (Crocodilia) del territorio Argentino. Consideraciones sobre su “status” taxonómico: Ameghiniana, v. 9, p. 2334.Google Scholar
Gasparini, Z., 1984, New Tertiary Sebecosuchia (Crocodylia: Mesosuchia) from Argentina: Journal of Vertebrate Paleontology, v. 4, p. 8595.CrossRefGoogle Scholar
Gasparini, Z., Chiappe, L.M., and Fernandez, M., 1991, A new Senonian peirosaurid (Crocodylomorpha) from Argentina and a synopsis of the South American Cretaceous crocodilians: Journal of Vertebrate Paleontology, v. 11, p. 316333.CrossRefGoogle Scholar
Gasparini, Z., Fernandez, M., and Powell, J.E., 1993, New Tertiary sebecosuchians (Crocodylomorpha) from South America: phylogenetic implications: Historical Biology, v. 7, p. 120.CrossRefGoogle Scholar
Gignac, P., and O'Brien, H., 2016, Suchian feeding success at the interface of ontogeny and macroevolution: Integrative and Comparative Biology, v. 56, p. 449458.CrossRefGoogle ScholarPubMed
Gignac, P.M., O'Brien, H., Turner, A.H., and Erickson, G.M., 2019, Feeding in crocodylians and their relatives: functional insights from ontogeny and evolution, in Bels, V., and Whishaw, I.Q., eds., Feeding in Vertebrates: Cham Switzerland, Springer, p. 575610.CrossRefGoogle Scholar
Godoy, P.L., 2020, Crocodylomorph cranial shape evolution and its relationship with body size and ecology: Journal of Evolutionary Biology, v. 33, p. 421.CrossRefGoogle ScholarPubMed
Godoy, P.L., Montefeltro, F.C., Norell, M.A., and Langer, M.C., 2014, An additional baurusuchid from the Cretaceous of Brazil with evidence of interspecific predation among Crocodyliformes: PLoS ONE, v. 9, e97138. https://doi.org/10.1371/journal.pone.0097138.CrossRefGoogle ScholarPubMed
Godoy, P.L., Bronzati, M., Eltink, E., Marsola, J.L.A., Cidade, G.M., Langer, M.G., Montefeltro, F.C., 2016, Postcranial anatomy of Pissarrachampsa sera (Crocodyliformes, Baurusuchidae) from the Late Cretaceous of Brazil: insights on lifestyle and phylogenetic significance: PeerJ, v. 4, e2075. https://doi.org/10.7717/peerj.2075.CrossRefGoogle ScholarPubMed
Gomani, E.M., 1997, A crocodyliform from the Early Cretaceous Dinosaur Beds, northern Malawi: Journal of Vertebrate Paleontology, v. 17, p. 280294.CrossRefGoogle Scholar
Hay, O.P., 1930, Second Bibliography and Catalogue of the Fossil Vertebrata of North America: Carnegie Institution of Washington, Washington D.C., v. 390, p. 11074.Google Scholar
Herrera, Y., Gasparini, Z., and Fernandez, M.S., 2013, A new Patagonian species of Cricosaurus (Crocodyliformes, Thalattosuchia): first evidence of Cricosaurus in middle–upper Tithonian lithographic limestone from Gondwana: Palaeontology, v. 56, p. 663678.CrossRefGoogle Scholar
Holliday, C.M., and Witmer, L.M., 2007, Archosaur adductor chamber evolution: integration of musculoskeletal and topological criteria in jaw muscle homology: Journal of Morphology, v. 268, p. 457484.CrossRefGoogle ScholarPubMed
Huxley, T.H., 1875, On Stagonolepis robertsoni, and on the evolution of the Crocodilia: Quarterly Journal of the Geological Society of London, v. 41, p. 423438.CrossRefGoogle Scholar
Iori, F.V., and Carvalho, I.S., 2011, Caipirasuchus paulistanus, a new sphagesaurid (Crocodylomorpha, Mesoeucrocodylia) from the Adamantina Formation (Upper Cretaceous, Turonian–Santonian), Bauru Basin, Brazil: Journal of Vertebrate Paleontology, v. 31, p. 12551264.CrossRefGoogle Scholar
Kellner, A.W.A., Pinheiro, A.E.P., and Campos, D.A., 2014, A new sebecid from the Paleogene of Brazil and the crocodyliform radiation after the K–Pg boundary, PLoS ONE, v. 9, e81386. https://doi.org/10.1371/journal.pone.0081386.Google Scholar
Langston, W., 1973, The crocodilian skull in historical perspective, in Gans, C., and Parsons, T.S., eds, Biology of the Reptilia, Vol. 4: Morphology D: New York, Academic Press, p. 233284.Google Scholar
Larsson, H.C.E., and Sues, H.-D., 2007, Cranial osteology and phylogenetic relationships of Hamadasuchus rebouli (Crocodyliformes: Mesoeucrocodylia) from the Cretaceous of Morocco: Zoological Journal of the Linnean Society, v. 149, p. 533567.CrossRefGoogle Scholar
Lecuona, A., and Pol, D., 2008, Tooth morphology of Notosuchus terrestris (Notosuchia: Mesoeucrocodylia): new evidence and implications: Comptes Rendus Palevol, v. 7, p. 407417.CrossRefGoogle Scholar
Lessner, E.J., and Holliday, C.M., 2020, A 3D ontogenetic atlas of Alligator mississippiensis cranial nerves and their significance for comparative neurology of reptiles: The Anatomical Record. https://doi.org/10.1002/ar.24550.CrossRefGoogle Scholar
MacLeod, N., 2012, Going round the bend II: extended eigen shape analysis: Palaeontological Association Newsletter, v. 81, p. 2339.Google Scholar
Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., and Hornik, K., 2014, Cluster: cluster analysis basics and extensions, R package version 1.15.3. http://cran.microsoft.com/snapshot/2014-12-19/web/packages/cluster/cluster.pdf.Google Scholar
McCurry, M.R., Evans, A.R., Fitzgerald, E.M.G., Adams, J.W., Clausen, P.D., and McHenry, C.R., 2017, The remarkable convergence of skull shape in crocodilians and toothed whales: Proceedings of the Royal Society B, v. 284, e20162348. http://dx.doi.org/10.1098/rspb.2016.2348.Google ScholarPubMed
McHenry, C.R., Clausen, P.D., Daniel, W.J.T., Meers, M.B., and Pendharkar, A., 2006, Biomechanics of the rostrum in crocodilians: a comparative analysis using finite element modeling: The Anatomical Record Part A, v. 288, p. 827849.CrossRefGoogle ScholarPubMed
Melstrom, K.M., and Irmis, R.B., 2019, Repeated evolution of herbivorous crocodyliforms during the age of dinosaurs: Current Biology, v. 29, p. 23892395.CrossRefGoogle ScholarPubMed
Meyer, H.v., 1841, Pholidosaurus schaumburgensis, ein Saurus aus dem Sandstein der Wald-Formation Nord-Deutschlands: Neues Jahrbuch für Mineralogie, v. 1841, p. 343345.Google Scholar
Mitteroecker, P., and Gunz, P., 2009, Advances in geometric morphometrics: Evolutionary Biology, v. 36, p. 235247.CrossRefGoogle Scholar
Molnar, R., 2010, A new reconstruction of the skull of Sebecus icaeorhinus (Crocodyliformes: Sebecosuchia) from the Eocene of Argentina: Brazilian Geographical Journal: Geosciences and Humanities Research Medium, v. 1, p. 314330.Google Scholar
Montefeltro, F.C., Larsson, H.C.E., and Langer, M.C., 2011, A New baurusuchid (Crocodyliformes, Mesoeucrocodylia) from the Late Cretaceous of Brazil and the phylogeny of Baurusuchidae: PLoS ONE, v. 6, e21916. https://doi.org/10.1371/journal.pone.0021916.CrossRefGoogle ScholarPubMed
Mook, C.C., 1924, A new crocodilian from Mongolia: American Museum Novitates, v. 117, p. 15.Google Scholar
Novas, F.E., Pais, D.F., Pol, D., Carvalho, I.S., Scanferla, A., Mones, A., and Riglos, M.S., 2009, Bizarre notosuchian crocodyliform with associated eggs from the Upper Cretaceous of Bolivia: Journal of Vertebrate Paleontology, v. 29, p. 13161320.CrossRefGoogle Scholar
Ortega, F., Gasparini, Z., Buscalioni, A.D., and Calvo, J.O., 2000, A new species of Araripesuchus (Crocodylomorpha, Mesoeucrocodylia) from the Lower Cretaceous of Patagonia (Argentina): Journal of Vertebrate Paleontology, v. 20, p. 5776.CrossRefGoogle Scholar
Ösi, A., 2013, The evolution of jaw mechanism and dental function in heterodont crocodyliforms: Historical Biology, v. 26, p. 279414.CrossRefGoogle Scholar
Paolillo, A., and Linares, O.J., 2007, Nuevos cocodrilos Sebecosuchia del Cenozoico Suramericano (Mesosuchia: Crocodylia): Paleobiologia Neotropical, v. 3, p. 125.Google Scholar
Pieper, S., Halle, M., and Kikinis, R., 2004, 3D Slicer, 2nd IEEE international symposium on biomedical imaging: nano to macro: Institute of Electrical and Electronics Engineers, Cat. n. 04EX821, v. 1, p. 632635.Google Scholar
Pinheiro, A.E.P., Pereira, P.V.L.G., Souza, R.G., Brum, A.S., Lopes, R.T., Machado, A.S., Bergqvist, L.P., and Simbras, F.M., 2018, Reassessment of the enigmatic crocodyliform “Goniopholispaulistanus Roxo, 1936: historical approach, systematic, and description by new materials, PloS ONE, v. 13, e0199984. https://doi.org/10.1371/journal.pone.0199984.Google Scholar
Pinheiro, A.E.P., Souza, R.G., Bandeira, K.L., Brum, A.S., Pereira, P.V.L.G., Castro, L.O.R., Ramos, R.R.C., and Simbras, F.M., 2021, The first notosuchian crocodyliform from the Araçatuba Formation (Bauru Group, Paraná Basin), and diversification of sphagesaurians: Anais da Academia Brasileira de Ciências, v. 93, suppl. 2, e20201591. https://doi.org/10.1590/0001-3765202120201591.CrossRefGoogle ScholarPubMed
Pol, D., 2003, New remains of Sphagesaurus huenei (Crocodylomorpha: Mesoeucrocodylia) from the Late Cretaceous of Brazil: Journal of Vertebrate Paleontology, v. 23, p. 817831.CrossRefGoogle Scholar
Pol, D., and Gasparini, Z., 2007, Crocodyliformes, in Gasparini, Z., Coria, R., and Salgado, L., eds., Patagonian Mesozoic Reptiles: Bloomington, Indiana, Indiana University Press, p. 116142.Google Scholar
Pol, D., and Gasparini, Z., 2009, Skull anatomy of Dakosaurus andiniensis (Thalattosuchia: Crocodylomorpha) and the phylogenetic position of Thalattosuchia: Journal of Systematic Palaeontology, v. 7, p. 163197.CrossRefGoogle Scholar
Pol, D., and Powell, J.E., 2011, A new sebecid mesoeucrocodylian from the Río Loro Formation (Palaeocene) of north-western Argentina: Zoological Journal of the Linnean Society, v. 163, p. 736.CrossRefGoogle Scholar
Pol, D., Turner, A.H., and Norell, M.A., 2009, Morphology of the Late Cretaceous crocodylomorph Shamosuchus djadochtaensis and a discussion of neosuchian phylogeny as related to the origin of Eusuchia: Bulletin of the American Museum of Natural History, v. 324, p. 1103.Google Scholar
Pol, D., Leardi, J.M., Lecuona, A., and Krause, M., 2012, Postcranial anatomy of Sebecus icaeorhinus (Crocodyliformes, Sebecidae) from the Eocene of Patagonia: Journal of Vertebrate Paleontology, v. 32, p. 328354.CrossRefGoogle Scholar
Pol, D., Nascimiento, P.M., Carvhalo, A.B., Riccomini, C., Pires-Domingues, R.A., and Zaher, H., 2014, A New notosuchian from the Late Cretaceous of Brazil and the phylogeny of advanced notosuchians: PLoS ONE, v. 9, e93105. https://doi.org/10.1371/journal.pone.0093105.CrossRefGoogle ScholarPubMed
Price, L.I., 1945, A new reptile from the Cretaceous of Brazil, Ministério da Agricultura, Departamento Nacional da Produção Mineral: Divisão de Geologia e Mineralogie, Notas Preliminares e Estudos, v., 25, p. 19.Google Scholar
Price, L.I., 1950, On a new crocodilian, Sphagesaurus, from the Cretaceous of the State of São Paulo, Brazil: Anais da Academia Brasileira de Ciências, v. 22, p. 7783.Google Scholar
Price, L.I., 1959, Sobre um crocodilideo notossuquio do Cretacico Brasileiro: Boletim Divisão de Geologia e Mineralogia Rio de Janeiro, v. 118, p. 155.Google Scholar
R Core Team, 2020, R: A Language and Environment for Statistical Computing V. 3.6.3: R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.Google Scholar
Rayfield, E.J., and Milner, A.C., 2008, Establishing a framework for archosaur cranial mechanics: Paleobiology, v. 34, p. 494515.CrossRefGoogle Scholar
Rohlf, F.J., 2013, TpsDig, version 2.17: State University of New York at Stony Brook. https://www.sbmorphometrics.org/.Google Scholar
Ruiz, J.V., Bronzati, M., Ferreira, G.S., Martins, K.C., Queiroz, M.V., Langer, M.C., and Montefeltro, F.C., 2021, A new species of Caipirasuchus (Notosuchia, Sphagesauridae) from the Late Cretaceous of Brazil and the evolutionary history of Sphagesauria: Journal of Systematic Palaeontology, v. 19, p. 265287.CrossRefGoogle Scholar
Rusconi, C., 1933, Sobre reptiles Cretáceos del Uruguay (Uruguaysuchus aznarezi, n.g. n. sp.) y sus relaciones con los notosúchidos de Patagonia: Instituto de Geología y Perforaciones, v. 19, p. 164.Google Scholar
Sellés, A.G., Blanco, A., Vila, B., Marmi, J., López-Soriano, F.J., Llácer, S., Frigola, J., Canals, M., and Galobart, À., 2020, A small Cretaceous crocodyliform in a dinosaur nesting ground and the origin of sebecids: Scientific Reports, v. 10, 15293. https://doi.org/10.1038/s41598-020-71975-y.CrossRefGoogle Scholar
Sereno, P.C., and Larsson, H.C.E., 2009, Cretaceous crocodyliforms from the Sahara: ZooKeys, v. 28, p. 1143.CrossRefGoogle Scholar
Simpson, G.G., 1937, New reptiles from the Eocene of South America: American Museum Novitates, v. 927, p. 13.Google Scholar
Singh, S.S., and Chauhan, N.C., 2011, K-means v/s K-medoids: a comparative study: National Conference on Recent Trends in Engineering and Technology, v. 13, p. 4.Google Scholar
Stubbs, T.L., Pierce, S.E., Rayfield, E.J., Anderson, P.S., 2013, Morphological and biomechanical disparity of crocodile-line archosaurs following the end-Triassic extinction: Proceedings of the Royal Society B, v. 280, 20131940. https://doi.org/10.1098/rspb.2013.1940.Google ScholarPubMed
Stubbs, T.L., Pierce, S.E., Elsler, A., Anderson, P.S., Rayfield, E.J., and Benton, M.J., 2021, Ecological opportunity and the rise and fall of crocodylomorph evolutionary innovation, Proceedings of the Royal Society B, v. 288, 20210069. https://doi.org/10.1098/rspb.2021.0069.Google Scholar
Tarsitano, S.F., 1985, Cranial metamorphosis and the origin of the Eusuchia. Konstruktions morphologie Nr 175: Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, v. 170, p. 2744.CrossRefGoogle Scholar
Tibshirani, R., Walther, G., and Hastie, T., 2001, Estimating the number of clusters in a data set via the gap statistic: Journal of the Royal Statistical Society Series B (Statistical Methodology), v. 63, p. 411423.CrossRefGoogle Scholar
Turner, A.H., and Buckley, G.A., 2008, Mahajangasuchus insignis (Crocodyliformes: Mesoeucrocodylia) cranial anatomy and new data on the origin of the eusuchian-style palate: Journal of Vertebrate Paleontology, v. 28, p. 382408.CrossRefGoogle Scholar
Turner, A.H., and Sertich, J.J., 2010, Phylogenetic history of Simosuchus clarki (Crocodyliformes: Notosuchia) from the Late Cretaceous of Madagascar: Journal of Vertebrate Paleontology, v. 30, p. 177236.CrossRefGoogle Scholar
Van der Laan, M., Pollard, K., and Bryan, J., 2003, A new partitioning around medoids algorithm: Journal of Statistical Computation and Simulation, v. 73, p. 575584.CrossRefGoogle Scholar
Venables, W.N., and Ripley, B.D., 2002, Modern Applied Statistics with S. Fourth Edition: Springer, New York, 495 p.CrossRefGoogle Scholar
Walker, A.D., 1970, A revision of the Jurassic reptile Hallopus victor (Marsh), with remarks on the classification of crocodiles: Philosophical Transactions of the Royal Society London, v. 257, p. 323372.Google Scholar
Whetstone, K., and Whybrow, P., 1983, A “cursorial” crocodilian from the Triassic of Lesotho (Basutoland), southern Africa: Occasional Papers of the University of Kansas Museum of Natural History, v. 106, p. 137.Google Scholar
Wickham, H., 2016, ggplot2: Elegant Graphics for Data Analysis: Springer, New York. https://ggplot2.tidyverse.org.CrossRefGoogle Scholar
Woodward, A.S., 1896, On two Mesozoic crocodilians from the red sandstones of the territory of Neuquen (Argentina Republic): Notosuchus (genus novum) and Cynodontosuchus (genus novum): Annales del Museo de La Plata, Paleontología Argentina, v. 4, p. 120.Google Scholar
Wu, X.-C., and Sues, H.-D., 1996, Anatomy and phylogenetic relationships of Chimaerasuchus paradoxus, an unusual crocodyliform reptile from the Lower Cretaceous of Hubei, China: Journal of Vertebrate Paleontology, v. 16, p. 688702.CrossRefGoogle Scholar
Wu, X.-C., Sues, H.-D., and Sun, A., 1995, A plant-eating crocodyliform reptile from the Cretaceous of China: Nature, v. 376, p. 678680.CrossRefGoogle Scholar