Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T07:01:18.287Z Has data issue: false hasContentIssue false

Carnivorous reptile feeding strategies and postmortem food-processing behaviors: tooth traces on bones from the Upper Triassic Grabowa Formation (southern Poland)

Published online by Cambridge University Press:  02 May 2022

Grzegorz Sadlok*
Affiliation:
Institute of Earth Sciences, Faculty of Natural Sciences, University of Silesia in Katowice, Bedzińska 60 Street, 41-200, Sosnowiec, Poland

Abstract

Carnivores make traces on bones with their teeth when feeding. A true predatory bite trace (predichnia) forms when a predator catches and kills its prey or attempts to do so. Both predators and scavengers may leave their nonpredatory feeding traces during postmortem food processing. Despite the interpretative uncertainties as to the ethology such ichnofossils may represent, the bite traces have been traditionally classified as predichnia—traces of predation. Previously, there was no alternative ethological category available for workers to classify them. The present paper fills that gap and describes tooth-made ichnofossils from the continental Upper Triassic Grabowa Formation of southern Poland. It discusses modes the serration and striations might have formed along Linichnus edges, potential makers of the trace fossils, feeding strategies, and food-processing behaviors the ichnites may represent. All the bite traces are thought to act as a record of carnivorous behaviors and are classified as sarcophagichnia, a new ethological category (traces of feeding on a body). Finally, all the studied bite traces were likely inflicted postmortem and are classified as necrophagichnia (traces of feeding on an already dead body), most likely produced by scavengers in the studied cases. Data on recent carnivores link these ichnites with postmortem food-processing behaviors, such as dismembering and defleshing. Scavenging could, in fact, have been a preferred carnivorous feeding strategy in the seasonal Norian climate of the area. Dry seasons could have perhaps increased vertebrate mortality rates and provided plenty of carcasses for carnivores to feed on.

Type
Articles
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albert, M., et al. , 2010, Inkscape v. 0.47. http://www.inkscape.orgGoogle Scholar
Alexander, J.P., and Burger, B.J., 2001, Stratigraphy and taphonomy of Grizzly Buttes, Bridger Formation, and the middle Eocene of Wyoming, in Gunnell, G.H., ed., Eocene Biodiversity: Boston, Springer, p. 165196.CrossRefGoogle Scholar
Antón, M., and Galobart, À., 1999, Neck function and predatory behavior in the scimitar toothed cat Homotherium latidens (Owen): Journal of Vertebrate Paleontology, v. 19, p. 771784.CrossRefGoogle Scholar
Antón, M., Siliceo, G., Pastor, J.F., Morales, J., and Salesa, M.J., 2019, The early evolution of the sabre-toothed felid killing bite: the significance of the cervical morphology of Machairodus aphanistus (Carnivora: Felidae: Machairodontinae): Zoological Journal of the Linnean Society, v. 188, p. 319342.CrossRefGoogle Scholar
Aramendi, J., Maté-González, M.A., Yravedra, J., Ortega, M.C., Arriaza, M.C., González-Aguilera, D., Baquedano, E., and Domínguez-Rodrigo, M., 2017, Discerning carnivore agency through the three-dimensional study of tooth pits: revisiting crocodile feeding behaviour at FLK-Zinj and FLK NN3 (Olduvai Gorge, Tanzania): Palaeogeography, Palaeoclimatology, Palaeoecology, v. 488, p. 93102.CrossRefGoogle Scholar
Avilla, L.S., Fernandes, R., and Ramos, D.F.B., 2004, Bite marks on a crocodylomorph from the Upper Cretaceous of Brazil: evidence of social behavior?: Journal of Vertebrate Paleontology, v. 24, p. 971973.CrossRefGoogle Scholar
Baquedano, E., Domínguez-Rodrigo, M., and Musiba, C., 2012, An experimental study of large mammal bone modification by crocodiles and its bearing on the interpretation of crocodile predation at FLK Zinj and FLK NN3: Journal of Archaeological Science, v. 39, p. 17281737.CrossRefGoogle Scholar
Bell, P.R., and Currie, P.J., 2010, A tyrannosaur jaw bitten by a confamilial: scavenging or fatal agonism?: Lethaia, v. 43, p. 278281.CrossRefGoogle Scholar
Bell, P.R., Currie, P.J., and Lee, Y.N., 2012, Tyrannosaur feeding traces on Deinocheirus (Theropoda: ?Ornithomimosauria) remains from the Nemegt Formation (Late Cretaceous), Mongolia: Cretaceous Research, v. 37, p. 186190.CrossRefGoogle Scholar
Benton, M.J., 2005, Vertebrate Palaeontology (third edition): Oxford, Blackwell, 455 p.Google Scholar
Berryman, A.A., 1992, The origins and evolution of predator–prey theory: Ecology, v. 73, p. 15301535.CrossRefGoogle Scholar
Bianucci, G., Sorce, B., Storai, T., and Landini, W., 2010, Killing in the Pliocene: shark attack on a dolphin from Italy: Palaeontology. v. 53, p. 457470.CrossRefGoogle Scholar
Binford, L.R., 1981, Bones: Ancient Men and Modern Myths: New York, Academic Press, 320 p.Google Scholar
Blumenschine, R.J., 1986, Carcass consumption sequences and the archaeological distinction of scavenging and hunting: Journal of Human Evolution, v. 15, p. 639659.CrossRefGoogle Scholar
Blumenschine, R.J., Marean, C.W., and Capaldo, S.D., 1996. Blind tests of inter-analyst correspondence and accuracy in the identification of cut marks, percussion marks, and carnivore tooth marks on bone surfaces: Journal of Archaeological Science, v. 23. p. 493507.CrossRefGoogle Scholar
Boaz, N.T., Ciochon, R.L., Xu, Q., and Liu, J., 2000, Large mammalian carnivores as a taphonomic factor in the bone accumulation at Zhoukoudian: Acta Anthropologica Sinica, v. 19, p. 224234.Google Scholar
Botfalvai, G., Prondvai, E., and Ősi, A., 2014, Inferred bite marks on a Late Cretaceous (Santonian) bothremydid turtle and a hylaeochampsid crocodilian from Hungary: Cretaceous Research, v. 50, p. 304317.CrossRefGoogle Scholar
Brochu, C.A., 2003, Phylogenetic approaches toward crocodylian history: Annual Review of Earth and Planetary Sciences, v. 31, p. 357397.CrossRefGoogle Scholar
Bromley, R.G., 1990, Trace Fossils: Biology and Taphonomy: London, Unwin Hyman, 280 p.Google Scholar
Budziszewska-Karwowska, E., Bujok, A., and Sadlok, G., 2010, Bite marks on an Upper Triassic dicynodontid tibia from Zawiercie, Krakow-Częstochowa Upland, southern Poland: Palaios, v. 25, p. 415421.CrossRefGoogle Scholar
Buffetaut, E., 1983, Wounds on the jaw of an Eocene mesosuchian crocodilian as possible evidence for the antiquity of crocodilian intraspecific fighting behaviour: Paläontologische Zeitschrift, v. 57, p. 143145.CrossRefGoogle Scholar
Carpenter, K., 1998, Evidence of predatory behavior by carnivorous dinosaurs: Gaia, v. 15, p. 135144.Google Scholar
Carrano, M.T., and Hutchinson, J.R., 2002, Pelvic and hindlimb musculature of Tyrannosaurus rex (Dinosauria: Theropoda): Journal of Morphology, v. 253, p. 207228.CrossRefGoogle Scholar
Casal, G.A., Martínez, R.D., Ibiricu, L.M., Riga, B.G., and Foix, N., 2013, Tafonomía del dinosaurio terópodo Aniksosaurus darwini, Formación Bajo Barreal, Cretácico Tardío de Patagonia (Argentina): Ameghiniana, v. 50, p. 571592.CrossRefGoogle Scholar
Chattopadhyay, S., Shee, B., and Sukul, B., 2013, Fatal crocodile attack: Journal of Forensic and Legal Medicine, v. 20, p. 11391141.CrossRefGoogle ScholarPubMed
Chin, K., Tokaryk, T.T., Erickson, G.M., and Calk, L.C., 1998, A king-sized theropod coprolite: Nature, v. 393, p, 680682.CrossRefGoogle Scholar
Cisneros, J.C., 2005, New Pleistocene vertebrate fauna from El Salvador: Revista Brasileira de Paleontologia, v. 8, p. 239255.CrossRefGoogle Scholar
Cleuren, J., and De Vree, F., 1992, Kinematics of the jaw and hyolingual apparatus during feeding in Caiman crocodilus: Journal of Morphology, v. 212, p. 141154.CrossRefGoogle ScholarPubMed
Cleuren, J., and De Vree, F., 2000, Feeding in crocodilians, in Schwenk, K., ed., Feeding: Form, Function, and Evolution in Tetrapod Vertebrates: London, Academic Press, p. 337358.CrossRefGoogle Scholar
Clevenger, A.P., Campos, M.A., and Hartasanchez, A., 1994, Brown bear Ursus arctos predation on livestock in the Cantabrian Mountains, Spain: Acta Theriologica, v. 39, p. 267278.CrossRefGoogle Scholar
Collareta, A., Lambert, O., Landini, W., Di Celma, C., Malinverno, E., Varas-Malca, R., Urbina, M., and Bianucci, G., 2017, Did the giant extinct shark Carcharocles megalodon target small prey? Bite marks on marine mammal remains from the late Miocene of Peru: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 469, p. 8491.CrossRefGoogle Scholar
Cox, C.B., and Parrington, F.R., 1965, New Triassic dicynodonts from South America, their origins and relationships: Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, v. 248, p. 457514.Google Scholar
D'Amore, D.C., and Blumenschine, R.J., 2009, Komodo monitor (Varanus komodoensis) feeding behavior and dental function reflected through tooth marks on bone surfaces, and the application to ziphodont paleobiology: Paleobiology, v. 35, p. 525552.CrossRefGoogle Scholar
D'Amore, D.C., and Blumenschine, R.J., 2012, Using striated tooth marks on bone to predict body size in theropod dinosaurs: a model based on feeding observations of Varanus komodoensis, the Komodo monitor: Paleobiology, v. 38, 79100.CrossRefGoogle Scholar
D'Amore, D.C., Moreno, K., McHenry, C.R., and Wroe, S., 2011, The effects of biting and pulling on the forces generated during feeding in the Komodo dragon (Varanus komodoensis): PLoS ONE, v. 6, e26226, https://doi.org/10.1371/journal.pone.0026226CrossRefGoogle Scholar
DePalma, R.A., Burnham, D.A., Martin, L.D., Rothschild, B.M., and Larson, P.L., 2013, Physical evidence of predatory behavior in Tyrannosaurus rex: Proceedings of the National Academy of Sciences: v. 110, p. 1256012564.CrossRefGoogle ScholarPubMed
Drumheller, S.K., and Brochu, C.A., 2014, A diagnosis of Alligator mississippiensis bite marks with comparisons to existing crocodylian datasets: Ichnos, v. 21, p. 131146.CrossRefGoogle Scholar
Drumheller, S.K., and Brochu, C.A., 2016, Phylogenetic taphonomy: a statistical and phylogenetic approach for exploring taphonomic patterns in the fossil record using crocodylians: Palaios, v. 31, p. 463478.CrossRefGoogle Scholar
Drumheller, S.K., Stocker, M.R., and Nesbitt, S.J., 2014, Direct evidence of trophic interactions among apex predators in the Late Triassic of western North America: Naturwissenschaften, v. 101, p. 975987.CrossRefGoogle ScholarPubMed
Drumheller, S.K., McHugh, J.B., Kane, M., Riedel, A., and D'Amore, D.C., 2020, High frequencies of theropod bite marks provide evidence for feeding, scavenging, and possible cannibalism in a stressed Late Jurassic ecosystem: PLoS ONE, v15, e0233115, https://doi.org/10.1371/journal.pone.0233115CrossRefGoogle Scholar
Drymala, S.M., Bader, K., and Parker, W.G., 2021, Bite marks on an aetosaur (Archosauria, Suchia) osteoderm: assessing Late Triassic predator–prey ecology through ichnology and tooth morphology: Palaios, v. 36, p. 2837.CrossRefGoogle Scholar
Dzik, J., Sulej, T., and Niedźwiedzki, G., 2008, A dicynodont–theropod association in the latest Triassic of Poland: Acta Palaeontologica Polonica, v. 53, p. 733738.CrossRefGoogle Scholar
Ekdale, A., 1985, Paleoecology of the marine endobenthos: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 50, p. 6381.CrossRefGoogle Scholar
Erickson, B.R., 1984. Chelonivorous habits of the Paleocene crocodile Leidyosuchus formidabilis: Scientific Publications of the Science Museum of Minnesota, v. 5, p. 39.Google Scholar
Erickson, G.M., and Olson, K.H., 1996, Bite marks attributable to Tyrannosaurus rex: preliminary description and implications: Journal of Vertebrate Paleontology, v. 16, p. 175178.CrossRefGoogle Scholar
Erickson, G.M., Lappin, A.K., and Vliet, K.A., 2003, The ontogeny of bite-force performance in American alligator (Alligator mississippiensis): Journal of Zoology, v. 260, p. 317327.CrossRefGoogle Scholar
Evans, A.R., and Pineda-Munoz, S., 2018, Inferring mammal dietary ecology from dental morphology, in Croft, D.A., Su, D.F., and Simpson, S.W., eds., Methods in Paleoecology: Reconstructing Cenozoic Terrestrial Environments and Ecological Communities: Cham, Springer, p. 3751.CrossRefGoogle Scholar
Fijałkowska-Mader, A., Heunisch, C., and Szulc, J., 2015, Palynostratigraphy and palynofacies of the Upper Silesian Keuper (southern Poland): Annales Societatis Geologorum Poloniae, v. 85, p. 637661.Google Scholar
Fiorillo, A.R., 1991, Prey bone utilization by predatory dinosaurs: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 88, p. 157166.CrossRefGoogle Scholar
Fisher, D.C., 1981, Crocodilian scatology, microvertebrate concentrations, and enamel-less teeth: Paleobiology, v. 7. p. 262275.CrossRefGoogle Scholar
Forrest, R., 2003, Evidence for scavenging by the marine crocodile Metriorhynchus on the carcass of a plesiosaur: Proceedings of the Geologists' Association, v. 114, p. 363366.CrossRefGoogle Scholar
Fürsich, F.T., 1974, On Diplocraterion Torell 1870 and the significance of morphological features in vertical, spreiten-bearing, U-shaped trace fossils: Journal of Paleontology, v. 48, p. 952962.Google Scholar
Gruszka, B., and Zieliński, T., 2008, Evidence for a very low-energy fluvial system: a case study from the dinosaur-bearing Upper Triassic rocks of Southern Poland: Geological Quarterly, v. 52, p. 239252.Google Scholar
Henschel, J.R., and Skinner, J.D., 1990, The diet of the spotted hyaenas Crocuta crocuta in Kruger National Park: African Journal of Ecology, v. 28, p. 6982.CrossRefGoogle Scholar
Hone, D.W.E., and Chure, D.J., 2018, Difficulties in assigning trace makers from theropodan bite marks: an example from a young diplodocoid sauropod: Lethaia, v. 51, p. 456466.CrossRefGoogle Scholar
Hone, D.W.E., and Watabe, M., 2010, New information on scavenging and selective feeding behaviour of tyrannosaurids: Acta Palaeontologica Polonica, v. 55, p. 627634.CrossRefGoogle Scholar
Jacobsen, A.R., 1998, Feeding behaviour of carnivorous dinosaurs as determined by tooth marks on dinosaur bones: Historical Biology, v. 13, p. 1726.CrossRefGoogle Scholar
Jacobsen, A.R., 2003, Predatory behaviour of carnivorous dinosaurs: ecological interpretations based on tooth marked dinosaur bones and wear patterns of theropod teeth: Judith River Group (Upper Cretaceous, Campanian), Alberta, Canada [Ph.D. thesis]: Aarhus, University of Aarhus, 79 p.Google Scholar
Jacobsen, A.R., and Bromley, R.G., 2009, New ichnotaxa based on tooth impressions on dinosaur and whale bones: Geological Quarterly, v. 53, p. 373382.Google Scholar
Jędrzejewska, B., and Jędrzejewski, W., 2001, Ekologia zwierząt drapieżnych Puszczy Białowieskiej: Warsaw, Wydawnictwo Naukowe PWN, 461 p.Google Scholar
Jewuła, K., Matysik, M., Paszkowski, M., and Szulc, J., 2019, The Late Triassic development of playa, gilgai floodplain, and fluvial environments from Upper Silesia, southern Poland: Sedimentary Geology, v. 379, p. 2545.CrossRefGoogle Scholar
Katsura, Y., 2004, Paleopathology of Toyotamaphimeia machikanensis (Diapsida, Crocodylia) from the Middle Pleistocene of central Japan: Historical Biology, v. 16, p. 9397.CrossRefGoogle Scholar
Kimball, S., Mattis, P., and GIMP Development Team, 2008, Gimp v. 2.6.8, http://www.gimp.org/Google Scholar
Lebedev, O.A., Mark-Kurik, E., Karatajūtė-Talimaa, V.N., Lukševičs, E., and Ivanov, A., 2009, Bite marks as evidence of predation in early vertebrates: Acta Zoologica, v. 90, p. 344356.CrossRefGoogle Scholar
Lima, S.L., 1998, Nonlethal effects in the ecology of predator–prey interactions: Bioscience, v. 48, p. 2534.CrossRefGoogle Scholar
Longrich, N.R., Horner, J.R., Erickson, G.M., and Currie, P.J., 2010, Cannibalism in Tyrannosaurus rex: PLoS ONE, v. 5, e13419, https://doi.org/10.1371/journal.pone.0013419CrossRefGoogle ScholarPubMed
Martin, R.A., Hammerschlag, N., Collier, R.S., and Fallows, C., 2005, Predatory behaviour of white sharks (Carcharodon carcharias) at Seal Island, South Africa: Journal of the Marine Biological Association of the United Kingdom, v. 85, p. 11211136.CrossRefGoogle Scholar
Mate-Gonzalez, M.A., Palomeque-Gonzalez, J.F., Yravedra, J., Gonzalez-Aguilera, D., and Dominguez-Rodrigo, M., 2016, Micro-photogrammetric and morphometric differentiation of cut marks on bones using metal knives, quartzite, and flint flakes: Archaeological and Anthropological Sciences, v. 10, p. 805816.CrossRefGoogle Scholar
McKie, T., and Williams, B., 2009, Triassic palaeogeography and fluvial dispersal across the Northwest European Basins: Geological Journal, v. 44, p. 711741.CrossRefGoogle Scholar
Mikuláš, R., Kadlecová, E., Fejfar, O., and Dvořák, Z., 2006, Three new ichnogenera of biting and gnawing traces on reptilian and mammalian bones: a case study from the Miocene of the Czech Republic: Ichnos, v. 13, p. 113127.CrossRefGoogle Scholar
Milàn, J., 2012, Crocodylian scatology—a look into morphology, internal architecture, inter-and intraspecific variation and prey remains in extant crocodylian feces, in Hunt, P., Milàn, J., Lucas, S.G., and Spielmann, J.A., eds., Vertebrate Coprolites: New Mexico Museum of Natural History and Science, Bulletin 57, p. 65–72.Google Scholar
Milàn, J., Kofoed, J., and Bromley, R.G., 2010, Crocodylian-chelonian carnivory: bite traces of dwarf caiman, Paleosuchus palpebrosus, in red-eared slider, trachemys scripta, carapaces, in Milàn, J., Kofoed, J., Bromley, R.G., Lucas, S.G., Lockley, M.G., and Spielmann, J.A., eds., Crocodile Tracks and Traces: New Mexico Museum of Natural History and Science, Bulletin 51, p. 195–199.Google Scholar
Miller, M.F., 2003, Styles of behavioral complexity recorded by selected trace fossils: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 192, p. 3343.CrossRefGoogle Scholar
Moreno, K., Wroe, S., Clausen, P., McHenry, C., D'Amore, D.C., Rayfield, E.J., and Cunningham, E., 2008, Cranial performance in the Komodo dragon (Varanus komodoensis) as revealed by high-resolution 3-D finite element analysis: Journal of Anatomy, v. 212, p. 736746.CrossRefGoogle ScholarPubMed
Muñiz, F., Belaústegui, Z., Toscano, A., Ramirez-Cruzado, S., and Vintaned, J.A.G., 2020, New ichnospecies of Linichnus Jacobsen & Bromley, 2009: Ichnos, v. 27, p. 344351.CrossRefGoogle Scholar
Murmann, D.C., Brumit, P.C., Schrader, B.A., and Senn, D.R., 2006, A comparison of animal jaws and bite mark patterns: Journal of Forensic Sciences, v. 51, p. 846860.CrossRefGoogle ScholarPubMed
Niedźwiedzki, G., and Budziszewska-Karwowska, E., 2018, A new occurrence of the Late Triassic archosaur Smok in southern Poland: Acta Palaeontologica Polonica, v. 63, p. 703712.CrossRefGoogle Scholar
Niedźwiedzki, G., Gorzelak, P., and Sulej, T., 2010, Bite traces on dicynodont bones and the early evolution of large terrestrial predators: Lethaia, v. 44, p. 8792.CrossRefGoogle Scholar
Niedźwiedzki, G., Sulej, T., and Dzik, J., 2011, A large predatory archosaur from the Late Triassic of Poland: Acta Palaeontologica Polonica, v. 57, p. 267276.CrossRefGoogle Scholar
Njau, J.K., and Blumenschine, R.J., 2006, A diagnosis of crocodile feeding traces on larger mammal bone, with fossil examples from the Plio-Pleistocene Olduvai Basin, Tanzania: Journal of Human Evolution, v. 50, p. 142162.CrossRefGoogle ScholarPubMed
Njau, J., and Gilbert, H., 2016, Standardizing terms for crocodile-induced bite marks on bone surfaces in light of the frequent bone modification equifinality found to result from crocodile feeding behavior, stone tool modification, and trampling: FOROST Occasional Publications, v. 3, p. 113.Google Scholar
Noto, C.R., Main, D.J., and Drumheller, S.K., 2012. Feeding traces and paleobiology of a Cretaceous (Cenomanian) crocodyliform: example from the Woodbine Formation of Texas: Palaios, v. 27, p. 105115.CrossRefGoogle Scholar
Ordiz, A., Milleret, C., Uzal, A., Zimmermann, B., Wabakken, P., Wikenros, C., Sand, H., Swenson, J.E., and Kindberg, J., 2020, Individual variation in predatory behavior, scavenging and seasonal prey availability as potential drivers of coexistence between wolves and bears: Diversity, v. 12. p. 356372.CrossRefGoogle Scholar
Orłowska-Zwolińska, T., 1983, Palinostratygrafia epikontynentalnych osadów wyższego triasu w Polsce: Warsaw, Prace Instytutu Geologicznego CIV, 89 p.Google Scholar
Ouwens, P.A., 1912, On a large Varanus species from the Island of Komodo: Bulletin du Jardin Botanique de Buitenzorg, v. 6, p. 13.Google Scholar
Pante, M.C., Muttart, M.V., Keevil, T.L., Blumenschine, R.J., Njau, J.K., and Merritt, S.R., 2017, A new high-resolution 3-D quantitative method for identifying bone surface modifications with implications for the Early Stone Age archaeological record: Journal of Human Evolution, v. 102, p. 111.CrossRefGoogle ScholarPubMed
Pobiner, B., 2008, Paleoecological information in predator tooth marks: Journal of Taphonomy, v. 6, p. 373397.Google Scholar
Rogers, R.R., Krause, D.W., and Rogers, K.C., 2003, Cannibalism in the Madagascan dinosaur Majungatholus atopus: Nature, v. 422. p. 515518.CrossRefGoogle ScholarPubMed
Sadlok, G., 2020, Putative crayfish burrows from the Upper Triassic Grabowa Formation of southern Poland: Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen, v. 298, p. 235249.CrossRefGoogle Scholar
Sadlok, G., and Wawrzyniak, Z., 2013, Upper Triassic vertebrate tracks from Kraków–Częstochowa Upland, southern Poland: Annales Societatis Geologorum Poloniae, v. 83, p. 105111.Google Scholar
Schachner, E.R., Manning, P.L., and Dodson, P., 2011, Pelvic and hindlimb myology of the basal archosaur Poposaurus gracilis (Archosauria: Poposauridea): Journal of Morphology, v. 27, p. 14641491.CrossRefGoogle Scholar
Schaller, G.B., and Vasconcelos, J.M.C., 1978, Jaguar predation on capybara: Zeitschrift Säugetierkunde, v. 43, p. 296301.Google Scholar
Scheyer, T.M., Delfino, M., Klein, N., Bunbury, N., Fleischer-Dogley, F., and Hansen, D.M., 2018, Trophic interactions between larger crocodylians and giant tortoises on Aldabra Atoll, Western Indian Ocean, during the Late Pleistocene: Royal Society Open Science, v. 5, n. 171800, https://doi.org/10.1098/rsos.171800CrossRefGoogle ScholarPubMed
Schmitt, D.N., and Juell, K.E., 1994, Toward the identification of coyote scatological faunal accumulations in archaeological contexts: Journal of Archaeological Science, v. 21, p. 240262.CrossRefGoogle Scholar
Seidensticker, J., and McDougal, C., 1993, Tiger predatory behaviour, ecology and conservation: Symposium of the Zoological Society of London, no 65, p. 105125.Google Scholar
Smith, J.B., Vann, D.R., and Dodson, P., 2005, Dental morphology and variation in theropod dinosaurs: implications for the taxonomic identification of isolated teeth: The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, v. 285A, p. 699736.CrossRefGoogle Scholar
Smits, P.D., and Evans, A.R., 2012, Functional constraints on tooth morphology in carnivorous mammals: BMC Evolutionary Biology, v. 12, p. 146157.CrossRefGoogle ScholarPubMed
Souron, A., et al. , 2019, A new geometric morphometrics-based shape and size analysis discriminating anthropogenic and non-anthropogenic bone surface modifications of an experimental data set: IMEKO TC-4 International Conference on Metrology for Archaeology and Cultural Heritage, Florence, Italy, December 4–6, https://www.researchgate.net/publication/338120115_A_new_geometric_morphometrics-based_shape_and_size_analysis_discriminating_anthropogenic_and_non-anthropogenic_bone_surface_modifications_of_an_experimental_data_setGoogle Scholar
Steklis, H.D., and King, G.E., 1978, The craniocervical killing bite: toward an ethology of primate predatory behavior: Journal of Human Evolution, v. 7, p. 567581.CrossRefGoogle Scholar
Sulej, T., and Niedźwiedzki, G., 2018, An elephant-sized Late Triassic synapsid with erect limbs: Science, v. 363, p. 7880.CrossRefGoogle ScholarPubMed
Sulej, T., Bronowicz, R., Tałanda, M., and Niedzwiedzki, G., 2011, A new dicynodont-archosaur assemblage from the Late Triassic (Carnian) of Poland: Earth and Environmental Science Transactions of the Royal Society of Edinburgh, v. 101, p. 261269.CrossRefGoogle Scholar
Szulc, J., 2007a, Keuper, in Szulc, J., and Becker, A., eds., Proceedings, International Workshop on the Triassic of Southern Poland, Pan-European Correlation of the Epicontinental Triassic, 4th Meeting, September 3–8: Cracow, Polish Geological Society, Polish Geological Institute, Institute of Geological Sciences, Jagiellonian University, p. 3334.Google Scholar
Szulc, J., 2007b, Chronological outline of evolution of the eastern Germanic Basin in late Ladinian–Rhaetian times, in Szulc, J., and Becker, A. eds., Proceedings, International Workshop on the Triassic of Southern Poland, Pan-European Correlation of the Epicontinental Triassic, 4th Meeting, September 3–8: Cracow, Polish Geological Society, Polish Geological Institute, Institute of Geological Sciences, Jagiellonian University, p. 34–41.Google Scholar
Szulc, J., and Racki, G., 2015, Formacja grabowska–podstawowa jednostka litostratygraficzna kajpru Górnego Śląska: Przegląd Geologiczny, v. 63, p. 103113.Google Scholar
Szulc, J., Gradziński, M., Lewandowska, A., and Heunisch, C., 2006, The Upper Triassic crenogenic limestones in Upper Silesia (southern Poland) and their paleoenvironmental context, in Alonso-Zarza, A.M., and Tanner, L.H., eds., Paleoenvironmental Record and Applications of Calcretes and Palustrine Carbonates: Geological Society of America Special Paper, v. 416, p. 133–151.CrossRefGoogle Scholar
Szulc, J., Racki, G., and Jewuła, K., 2015, Key aspects of the stratigraphy of the Upper Silesian Middle Keuper, southern Poland: Annales Societatis Geologorum Poloniae, v. 85, p. 557586.Google Scholar
Tanke, D.H., and Currie, P.J., 1998, Head-biting behavior in theropod dinosaurs: paleopathological evidence: Gaia Ecological Perspectives for Science and Society, v. 184, p. 167184.Google Scholar
Taylor, M.A., 1987, How tetrapods feed in water: a functional analysis by paradigm: Zoological Journal of the Linnean Society, v. 91, p. 171195.CrossRefGoogle Scholar
Thulborn, T., and Turner, S., 2003, The last dicynodont: an Australian Cretaceous relict: Proceedings of the Royal Society of London B, v. 270, p. 985993.CrossRefGoogle ScholarPubMed
Vallon, L.H., Rindsberg, A.K., and Bromley, R.G., 2016, An updated classification of animal behaviour preserved in substrates: Geodinamica Acta, v. 28, p. 520.CrossRefGoogle Scholar
Vasconcellos, F.M., and Carvalho, I.S., 2010, Paleoichnological assemblage associated with Baurusuchus salgadoensis remains, a Baurusuchidae Mesoeucrocodylia from the Bauru Basin, Brazil (Late Cretaceous): Bulletin of the New Mexico Museum of Natural History and Science, v. 51, p. 227237.Google Scholar
Wawrzyniak, Z., 2010, What could eat dicynodonts (Dicynodontia, Therapsida) from Lipie Śląskie (Upper Silesia, Poland)? Preliminary results of research of the Late Triassic macroflora, in Nowakowski, D., ed., Morphology and Systematic of Fossil Vertebrates: Wrocław, DN Publisher, p. 118124.Google Scholar
Webb, G.J.W., Manolis, S.C., and Buckworth, R., 1983, Crocodylus johnstoni in the McKinlay River Area Northern Territory Australia 5: abnormalities and injuries: Australian Wildlife Research, v. 10, p. 407420.CrossRefGoogle Scholar
Westaway, M.C., Thompson, J.C., Wood, W.B., and Njau, J., 2011, Crocodile ecology and the taphonomy of early Australasian sites: Environmental Archaeology, v. 16, p. 124136.CrossRefGoogle Scholar
Zammit, M., and Kear, B.P., 2011, Healed bite marks on a Cretaceous ichthyosaur: Acta Palaeontologica Polonica, v. 56, p. 859863.CrossRefGoogle Scholar