Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T20:17:22.914Z Has data issue: false hasContentIssue false

Biometric study of late Oligocene larger benthic Foraminifera (Lepidocyclinidae and Nummulitidae) from the Qom Formation, Central Iran (Tajar-Kuh section)

Published online by Cambridge University Press:  16 March 2020

Narges Akbar-Baskalayeh
Affiliation:
Department of Geology, Faculty of Sciences, University of Tehran, Tehran, Iran, 1417466191 IR
György Less
Affiliation:
Institute of Mineralogy and Geology, University of Miskolc, H-3515 Miskolc-Egyetemváros, Hungary
Ebrahim Ghasemi-Nejad*
Affiliation:
Department of Geology, Faculty of Sciences, University of Tehran, Tehran, Iran, 1417466191, IR
Mohsen Yazdi-Moghadam
Affiliation:
Department of Geology, Faculty of Sciences, University of Tehran, Tehran, Iran, 1417466191 IR
Johannes Pignatti
Affiliation:
Department of Earth Sciences, University of Rome ‘La Sapienza’, Rome, Italy, 00185, IT
*
*Corresponding author [email protected]

Abstract

The Oligocene strata of the Qom Formation from the Tajar-Kuh section, Central Iran, are rich in various Larger Benthic Foraminifera (LBF). Morphometric studies of the internal features of the LBF tests were carried out based on matrix-free specimens from seven samples. The LBF assemblage studied in 24 populations mainly contains representatives of two nummulitid (the reticulate Nummulites bormidiensis Tellini, 1888, only in the lower three samples, and the radiate Nummulites kecskemetii Less, 1991 in all samples) and of two lepidocyclinid lineages. Of the latter, Nephrolepidina praemarginata (R. Douvillé, 1908) occurs in all the samples, whereas Eulepidina formosoides H. Douvillé, 1925 is present in the lower six samples. In the upper sample, the slightly more advanced Eulepidina ex. interc. formosoides H. Douvillé, 1925 et dilatata (Michelotti, 1861) is recorded. Due to the very similar taxonomic composition of the Tajar-Kuh section with their coeval faunas of the Mediterranean, the age was evaluated in the frame of the Western Tethyan Oligo-Miocene shallow benthic zonation (SBZ). Although the presence of E. formosoides suggests late Rupelian (SBZ 22A Zone) age, the occurrence of Heterostegina assilinoides, N. kecskemetii, N. bormidiensis, and Planolinderina sp. preferably represents the SBZ 22B Zone of the early Chattian. Based on the obtained results, at least the lower six samples can indicate the very basal part of the Chattian. More advanced Eulepidina from the uppermost sample suggests a slightly younger but still early Chattian age.

Type
Articles
Copyright
Copyright © 2020, The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, C.G., 1970, A reconsideration of the East Indian letter classification of the Tertiary: British Museum (Natural History), v. 19, p. 87137.Google Scholar
Adams, C.G., 1984, Neogene larger foraminifera: evolutionary and geological events in the context of datum planes, in Ikebe, N., and Tsuchi, R., eds., Pacific Neogene Datum Planes: Tokyo, Tokyo University Press, p. 4767.Google Scholar
Adams, C.G., 1987, On the classification of the Lepidocyclinidae (Foraminiferida) with redescriptions of the unrelated Paleocene genera Actinosiphon and Orbitosiphon: Micropaleontology, v. 33, p. 289317.CrossRefGoogle Scholar
Agard, P., Omrani, J., Jolivet, L., Whitechurch, H., Vrielynck, B., Spakman, W., Monié, P., Meyer, B., and Wortel, R., 2011, Zagros orogeny: a subduction-dominated process: Geological Magazine, v. 148, p. 692725.CrossRefGoogle Scholar
Alavi, M., 2004, Regional stratigraphy of the Zagros fold-thrust belt of Iran and its proforeland evolution: American Journal of Science, v. 304, p. 120.CrossRefGoogle Scholar
Alavi, M., 2007, Structures of the Zagros fold-thrust belt in Iran: American Journal of Science, v. 307, p. 10641095.Google Scholar
Amini, B., Emami, M.H., and Sahami, H., 1996, Geologic map of the Aran: Geological Survey of Iran, Ministry of Mines and Metals, Series 6258, scale 1:100,000.Google Scholar
Benedetti, A., Less, G., Parente, M., Pignatti, J., Cahuzac, B., Torres-Silva, A., and Buhl, D., 2018, Heterostegina matteuccii sp. nov. (Foraminiferida: Nummulitidae) from the lower Oligocene of Sicily and Aquitaine, a possible transatlantic immigrant: Journal of Systematic Palaeontology, v. 16, p. 87110.CrossRefGoogle Scholar
Biswas, S. K., 1992, Tertiary stratigraphy of Kutch: Journal of the Palaeontological Society of India, v. 37, p. 129.Google Scholar
Blanckenhorn, M., 1890, Das Eocän in Syrien: mit besonderer Berücksichtigung Nord-Syriens: Ein Beitrag zur Geologie Syriens: Zeitschrift der Deutschen Geologischen Gesellschaft, v. 42, p. 318359.Google Scholar
Boudagher-Fadel, M.K., 2018, Evolution and Geological Significance of Larger Benthic Foraminifera, Second edition: London, UCL Press, 695 p.CrossRefGoogle Scholar
Boudagher-Fadel, M.K., and Banner, F.T., 1999, Revision of the stratigraphic significance of the Oligocene–Miocene “Letter-Stages”: Revue de Micropaléontologie, v. 42, p. 9397.CrossRefGoogle Scholar
Boukhary, M., Abdelghany, O., Hussein-Kamel, Y., Bahr, S., Alsayigh, A.R., and Abdelraouf, M., 2010, Oligocene larger foraminifera from United Arab Emirates, Oman and western desert of Egypt: Historical Biology, v. 22, p. 348366.CrossRefGoogle Scholar
Bozorgnia, F., 1966, Qum Formation stratigraphy of the Central Basin of Iran and its intercontinental position: Bulletin of the Iranian Petroleum Institute, v. 24, p. 6976.Google Scholar
Bruguière, J.G., 1792, Camerine, in Encyclopédie méthodique: Histoire naturelle des Vers., v. 1, p. 395–400.CrossRefGoogle Scholar
Butt, A.A., 1966, Late Oligocene Foraminifera from Escornébeou, S.W. France: Utrecht, Schothanus and Jens, University of Utrecht, 123 p.Google Scholar
Cahuzac, B., and Poignant, A., 1997, Essai de biozonation de l'Oligo-Miocène dans les bassins européens: à l'aide des grands foraminifères néritiques: Bulletin de la Société géologique de France, v. 168, p. 155169.Google Scholar
Caudri, C.M.B., 1939, Lepidocyclinen von Java: Verhandelingen van het Geologisch en Mijnbouwkundig Genootschap voor, Nederland en Koloniën, v. 12, p. 135237.Google Scholar
Colman-Sadd, S., 1982, Two stage continental collision and plate driving forces: Tectonophysics, v. 90, p. 263282.CrossRefGoogle Scholar
de Blainville, H.M.D., 1827, Mémoire sur les Bélemnites: Considérées Zoologiquement et Géologiquement: Paris, FG Levrault., 147 p.Google Scholar
Defrance, M.J.L., 1822, Lenticulites, in Cuvier, M.F., ed., Dictionnaire des Sciences Naturelles: Strasbourg and Paris, Levrault F.G., and Le Normant, v. 25, p. 425–453.Google Scholar
Delage, Y., and Hérouard, E., 1896, Traité de Zoologie Concrète: leçons professées à la Sorbonne, La cellule et les protozoaires: Paris, Schleicher frères et cie, 848 p.Google Scholar
de la Harpe, P., 1879, Description des Nummulites appartenant à la zone supérieure des Falaises de Biarritz: Bulletin de la Societé de Borda, v. 4, p. 137156.Google Scholar
de Lamarck, J.B.d.M., 1801, Systême des Animaux Sans Vertèbres ou Tableau Général des Classes, des Ordres et des Genres de ces Animaux: Paris, Déterville, 432 p.Google Scholar
de Mulder, E.F.J., 1975, Micro fauna and sedimentary-tectonic: history of the Oligo-Miocene of the Ionian Islands and Western Epirus (Greece) [Ph.D. thesis]: Utrecht, University of Utrecht, 140 p.Google Scholar
d'Orbigny, A.D., 1826, Tableau méthodique de la classe des Céphalopodes: Annales des Sciences Naturelles, séries 1, p. 96314.Google Scholar
Douvillé, H., 1911, Les foraminifères dans le Tertiaire des Philippines: Philippine Journal of Science, séries, v. 6, pt. D, p. 5380.Google Scholar
Douvillé, H., 1925, Révision des Lépidocyclines: Deuxième et Troisième Partie: Mémoires de la Société Géologique de France, v. 2, 115 p.Google Scholar
Douvillé, R., 1908, Observations sur les faunes à Foraminifères du sommet du Nummulitique Italien: Bulletin de la Société Géologique de France, série, 4, p. 8895.Google Scholar
Drooger, C.W., 1993, Radial Foraminifera: Morphometrics and Evolution: Verhandelingen der Koninklijke Nederlandse Akademie van Wetenschappen: Afdeling NatuurkundeI, v. 41, 242 p.Google Scholar
Drooger, C., and Laagland, H., 1986, Larger foraminiferal zonation of the Europian-Mediterranean Oligocene: Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, Series B: Palaeontology, Geology, Physics, Chemistry, Anthropology, v. 89, p. 135148.Google Scholar
Drooger, C., and Roelofsen, J., 1982, Cycloclypeus from Ghar-Hassan, Malta: Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, series B: Palaeontology, Geology, Physics, Chemistry, Anthropology, v. 85, p. 203218.Google Scholar
Drooger, C.W., and Socin, C., 1959, Miocene foraminifera from Rosignano: northern Italy: Micropaleontology, v. 5, p. 415426.CrossRefGoogle Scholar
Drooger, C.W., Marks, P., and Papp, A., 1971, Smaller radiate Nummulites of Northwestern Europe: Utrecht Micropaleontological Bulletins, v. 5, p. 1137.Google Scholar
Fabiani, R., 1905, Studio geo-paleontologico dei Colli Berici: Atti del Regio Istituto Veneto di Scienze, Lettere ed Arti, v. 64, p. 17971839.Google Scholar
Ferràndez-Cañadell, C., and Bover-Arnal, T., 2017, Late Chattian larger foraminifera from the Prebetic domain (SE Spain): new data on shallow benthic zone 23: Palaios, v. 32, p. 83109.CrossRefGoogle Scholar
Förderer, M., Rödder, D., and Langer, M.R., 2018, Patterns of species richness and the center of diversity in modern Indo-Pacific larger foraminifera: Scientific reports, v. 8(1), p. 8189.CrossRefGoogle Scholar
Freudenthal, T., 1972, On some larger orbitoidal foraminifera in the Tertiary of Senegal and Portuguese Guinea: Proceedings of the 4th African Micropaleontological Colloquium (Abidjan, 1970), p. 144–162.Google Scholar
Furrer, M., and Soder, P., 1955, The Oligo-Miocene marine formation in the Qom region (Central Iran): Proceedings of the 4th World Petroleum Congress: Rome, Section I/A/5, p. 267–277.Google Scholar
Gansser, A., 1955, New aspects of the geology in Central Iran (Iran): 4th World Petroleum Congress: Rome, Section I/A/5, paper 2, p. 279–300.Google Scholar
Hallock, P., 1987, Fluctuations in the trophic resource continuum: a factor in global diversity cycles?: Paleoceanography and Paleoclimatology, v. 2, p. 457471.Google Scholar
Hallock, P., and Pomar, L., 2008, Cenozoic evolution of larger benthic foraminifers: paleoceanographic evidence for changing habitats: Proceedings of the 11th International Coral Reef Symposium, Ft. Lauderdale, Florida, p. 16–20.Google Scholar
Hallock, P., Silva, I.P., and Boersma, A., 1991, Similarities between planktonic and larger foraminiferal evolutionary trends through Paleogene paleoceanographic changes: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 83, p. 4964.CrossRefGoogle Scholar
Harzhauser, M., Piller, W. E., and Steininger, F., 2002, Circum-mediterranean Oligo-Miocene biogeographic evolution the gastropods point of view: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 183, p. 103133.CrossRefGoogle Scholar
Henson, F.R.S., 1937, Larger Foraminifera from Aintab, Turkish Syria: Eclogae Geologicae Helvetiae, v. 30, p. 4557.Google Scholar
Hohenegger, J., 2005, Estimation of environmental paleogradient values based on presence/absence data: a case study using benthic foraminifera for paleodepth estimation: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 217, p. 115130.CrossRefGoogle Scholar
Hohenegger, J., 2009, Functional shell geometry of symbiont-bearing benthic Foraminifera, Galaxea: Journal of Coral Reef Studies, v. 11, p. 8189.CrossRefGoogle Scholar
Hohenegger, J., 2011, Growth-invariant meristic characters tools to reveal phylogenetic relationships in Nummulitidae (Foraminifera): Turkish Journal of Earth Sciences, v. 20, p. 655681.Google Scholar
Hottinger, L., 1983, Processes determining the distribution of larger foraminifera in space and time, in Meulenkamp, J.E., ed., Reconstruction of Marine Paleoenvironments: Utrecht Micropaleontological Bulletin, v. 30, p. 239253.Google Scholar
Hottinger, L., 1997, Shallow benthic foraminiferal assemblages as signals for depth to their deposition and their limitations: Bulletin Société Géologique de France, v. 168, p. 491505.Google Scholar
Hottinger, L., 2001, Learning from the past, in Levi-Montalcini, R., ed., Frontiers of Life: Discovery and Spoliation of the Biosphere: London and San Diego, Academic Press, v. 4, p. 449477.Google Scholar
Hottinger, L., 2007, Revision of the foraminiferal genus Globoreticulina RAHAGHI, 1978, and of its associated fauna of larger foraminifera from the Late Middle Eocene of Iran: Carnets de Géologie, Series CG 2007–A06, p. 151.Google Scholar
Jones, R.W., and Racey, A., 1994, Cenozoic stratigraphy of the Arabian Peninsula and Gulf, in Simmons, M.D., ed., Micropalaeontology and Hydrocarbon Exploration in the Middle East: London, Chapman and Hall, UK, p. 273307.Google Scholar
Laagland, H., 1990, Cycloclypeus in the Mediterranean Oligocene [Ph.D. thesis]: Utrecht Micropaleontological Bulletins, v. 39, 171 p.Google Scholar
Lange, H., 1968, Die Evolution von Nephrolepidina und Eulepidina in Oligozän und Miozän der Insel Ithaka (Westgriechenland) [Ph.D. thesis]: München, Ludwig Maximilians–University, 78 p.Google Scholar
Langer, M.R. and Hottinger, L., 2000, Biogeography of selected “larger” foraminifera: Micropaleontology, v. 46, p. 105126.Google Scholar
Lemoine, P., and Douvillé, R., 1904, Sur le genre Lepidocyclina Gümbel: Mémoires de la Société géologique de France, Paléontologie, v. 32, p. 141.Google Scholar
Less, G., 1987, Paleontology and stratigraphy of the European Orthophragminae: Geologica Hungarica, Series Palaeontologica, v. 51, 373 p.Google Scholar
Less, G., 1991, Upper Oligocene larger foraminifers of the Bükk Mountains (NE Hungary): Magyar Állami Földtani Intézet Évi Jelentése, v. 1989, p. 411465.Google Scholar
Less, G., 1999, The late Paleogene larger foraminiferal assemblages of the Bükk Mountains (NE Hungary): Revista Española de Micropaleontología, v. 31, p. 347356.Google Scholar
Less, G., and Özcan, E., 2008, The Late Eocene evolution of nummulitid foraminifer Spiroclypeus in the Western Tethys: Acta Palaeontologica Polonica, v. 53, p. 303316.CrossRefGoogle Scholar
Less, G., Özcan, E., and Okay, A.I., 2011, Stratigraphy and larger Foraminifera of the Middle Eocene to Lower Oligocene shallow-marine units in the northern and eastern parts of the Thrace Basin, NW Turkey: Turkish Journal of Earth Sciences, v. 20, p. 793845.Google Scholar
Less, G., Frijia, G., Özcan, E., Saraswati, P.K., Parente, M., and Kumar, P., 2018, Nummulitids, lepidocyclinids and Sr-isotope data from the Oligocene of Kutch (western India) with chronostratigraphic and paleobiogeographic evaluations: Geodinamica Acta, v. 30, p. 183211.CrossRefGoogle Scholar
Loeblich, A.R., and Tappan, H., 1987, Foraminiferal Genera and Their Classification: New York, Van Nostrand Reinhold Company, 970 p.Google Scholar
Michelotti, G., 1841, Saggio Storico dei Rizopodi Caratteristici dei Terreni Sopracretacei: Memorie della Società Italiana di Scienze, v. 22, p. 253302.Google Scholar
Michelotti, G., 1861, Études sur le Miocène Inférieur de l'Italie Septentrionale: Natuurkundige Verhandelingen van de Hollandsche Maatschappij der Wetenschappen te Haarlem, v. 15, 183 p.Google Scholar
Özcan, E., and Less, G., 2009, First record of the co-occurrence of Western Tethyan and Indo-Pacific larger Foraminifera in the Burdigalian of Eastern Turkey: Journal of Foraminiferal Research, v. 39, p. 2339.Google Scholar
Özcan, E., Less, G., Báldi-Beke, M., Kollányi, K., and Acar, F., 2009a, Oligo-Miocene Foraminiferal record (Miogypsinidae, Lepidocyclinidae and Nummulitidae) from the Western Taurides (SW Turkey): biometry and implications for the regional geology: Journal of Asian Earth Sciences, v. 34, p. 740760.CrossRefGoogle Scholar
Özcan, E., Less, G., and Baydoğan, E., 2009b, Regional implications of biometric analysis of Lower Miocene larger foraminifera from Central Turkey: Micropaleontology, v. 55, p. 559588.Google Scholar
Özcan, E., Less, G., Báldi-Beke, M., and Kollányi, K., 2010a, Oligocene hyaline larger foraminifera from Kelereşdere Section (Muş, Eastern Turkey): Micropaleontology, v. 56, p. 465493.Google Scholar
Özcan, E., Less, G., Okay, A.I., Báldi-Beke, M., Kollányi, K., and Yilmaz, I.Ö., 2010b, Stratigraphy and larger Foraminifera of the Eocene shallow-marine and olistostromal units of the southern part of Thrace Basin, NW Turkey: Turkish Journal of Earth Sciences, v. 19, p. 2777.Google Scholar
Parente, M., and Less, G., 2019, Nummulitids, Lepidocyclinids and strontium isotope stratigraphy of the Porto Badisco Calcarenite (Salento Peninsula, southern Italy): implications for the biostratigraphy and paleobiogeography of Oligocene larger benthic Foraminifera: Italian Journal of Geosciences, v. 138, p. 239261. doi: 10.3301/IJG.2019.04CrossRefGoogle Scholar
Pawlowski, J., Holzmann, M., Tyszka, J., 2013, New supraordinal classification of Foraminifera: molecules meet morphology: Marine Micropaleontology, v. 100, p. 110.Google Scholar
Pignatti, J.S., 1998, The philosophy of larger foraminiferal biozonation: a discussion Dela, Slovenska akademija znanosti in umetnosti, Opera: Academia Scientiarum et Artium Slovenica, v. 34, p. 1520.Google Scholar
Pignatti, J., and Papazzoni, C.A., 2017, Oppel zones and their heritage in current larger foraminiferal biostratigraphy: Lethaia, v. 50, p. 369380.CrossRefGoogle Scholar
Pomar, L., and Hallock, P., 2007, Changes in coral-reef structure through the Miocene in the Mediterranean province: adaptive versus environmental influence: Geology, v. 35, p. 899902.Google Scholar
Pomar, L., Baceta, J.I., Hallock, P., Mateu-Vicens, G., and Basso, D., 2017, Reef building and carbonate production modes in the west-central Tethys during the Cenozoic: Marine and Petroleum Geology, v. 83, p. 261304.Google Scholar
Renema, W., 2007, Fauna development of larger benthic Foraminifera in the Cenozoic of Southeast Asia, in Renema, W., ed., Biogeography, Time and Place: Distributions, Barriers, and Islands: Topics in Geobiology, Dordrecht, Springer, v. 29, p. 179215. DOI: 10.1007/978-1-4020-6374-9_6CrossRefGoogle Scholar
Renema, W., Bellwood, D.R., Braga, J.C., Bromfield, K., Hall, R., Johnson, K.G., Lunt, P., Meyer, C.P., McMonagle, L.B., and Morley, R.J., 2008, Hopping hotspots: global shifts in marine biodiversity: Science, v. 321, p. 654657.CrossRefGoogle ScholarPubMed
Reuter, M., Piller, W.E., Harzhauser, M., Mandic, O., Berning, B., Rögl, F., Kroh, A., Aubry, M.P., Wielandt-Schuster, U., and Hamedani, A., 2007, The Oligo-/Miocene Qom Formation (Iran): evidence for an Early Burdigalian restriction of the Tethyan Seaway and closure of its Iranian gateways: International Journal of Earth Sciences, v. 98, p. 627650.CrossRefGoogle Scholar
Reuter, M., Piller, W.E., Harzhauser, M., and Kroh, A., 2013, Cyclone trends constrain monsoon variability during Late Oligocene sea level highstands (Kachchh Basin, NW India): Climate of the Past, v. 9, p. 21012115.CrossRefGoogle Scholar
Rögl, F., 1997, Palaeogeographic considerations for Mediterranean and Paratethys seaways (Oligocene to Miocene): Annalen des Naturhistorischen Museums in Wien für Mineralogie und Petrographie, Geologie und Paläontologie, Anthropologie und Prähistorie, v. 99A, p. 279310.Google Scholar
Roveda, V., 1970, Revision of the Nummulites (Foraminiferida) of the N. fabianii-fichteli group: Rivista Italiana di Paleontologia, v. 76, p. 235324.Google Scholar
Schaub, H., 1981, Nummulites et Assilines de la Téthys Paléogène: Taxinomie, Phylogenèse et Biostratigraphie: Atlas I: Basel, Birkhäuser, 238 p.Google Scholar
Scheffen, W., 1932, Ostindische Lepidocyclinen, Part 1: Wetenschappelijke Mededeelingen, Dienst Mijnbouw, Bandoeng, v. 19, p. 576.Google Scholar
Sengupta, S., 2000, Problems of classifying early Oligocene reticulate Nummulites (Foraminiferida) from southwestern Kutch, Gujarat: Journal of the Geological Society of India, v. 56, p. 673677.Google Scholar
Sengupta, S., Sarkar, S., and Mukhopadhyay, S., 2011, Saddle-shaped reticulate Nummulites from Early Oligocene rocks of Khari area, SW Kutch, India: Journal of Earth System Science, v. 120, p. 263268.CrossRefGoogle Scholar
Sepehr, M., and Cosgrove, J., 2004, Structural framework of the Zagros fold-thrust belt, Iran: Marine and Petroleum Geology, v. 21, p. 829843.CrossRefGoogle Scholar
Serra-Kiel, J., Hottinger, L., Caus, E., Drobne, K., Ferrandez, C., Jauhri, A.K., Less, G., Pavlovec, R., Pignatti, J., and Samso, J.M., 1998, Larger foraminiferal biostratigraphy of the Tethyan Paleocene and Eocene: Bulletin de la Société géologique de France, v. 169, p. 281299.Google Scholar
Stöcklin, J., and Nabavi, M., 1973, Tectonic map of Iran: Geological Survey of Iran, Tehran, scale 1:2,500,000.Google Scholar
Tellini, A., 1888, Le Nummulitidee terziarie dell'Alta Italia Occidentale: Bollettino della Societá Geologica Italiana, v. 7, p. 169230.Google Scholar
van der Vlerk, I.M., 1928, Het genus Lepidocycina in het Indopacifische gebied: Wetenschappelijke Mededeelingen, Dienst Mijnbouw Bandoeng, v. 8, p. 786.Google Scholar
van der Vlerk, I.M., 1959, Modification de l'ontogénèse pendant l’évolution des lépidocyclines: Bulletin de la Societé géologique de France, v. 7, p. 669673.CrossRefGoogle Scholar
van Vessem, E.J., 1978, Study of Lepidocyclinidae from South East Asia, particularly from Java and Borneo: Utrecht Micropaleontological Bulletins, v. 19, 163 p.Google Scholar
Walker, R., and Jackson, J., 2004, Active tectonics and Late Cenozoic strain distribution in central and eastern Iran: Tectonics, v. 23, Tc5010. doi:10.1029/2003TC001529CrossRefGoogle Scholar
Yazdi-Moghadam, M., 2011, Eraly Oligocene larger foraminiferal biostratigraphy of the Qom Formation, south of Uromieh (NW Iran): Turkish Journal of Earth Sciences, v. 20, p. 847856.Google Scholar
Yazdi-Moghadam, M., Sadeghi, A., Adabi, M. H., and Tahmasbi, A., 2018a, Foraminiferal biostratigraphy of the lower Miocene Hamzian and Arashtanab sections (NW Iran), northern margin of the Tethyan Seaway: Geobios, v. 51, p. 231246.CrossRefGoogle Scholar
Yazdi-Moghadam, M., Sadeghi, A., Adabi, M. H., and Tahmasbi, A., 2018b, Stratigraphy of the lower Oligocene nummulitic limestones, north of Sonqor (NW Iran): Rivista Italiana di Paleontologia e Stratigrafia, v. 124, p. 407419.Google Scholar