Published online by Cambridge University Press: 20 May 2016
A preliminary survey of benthic invertebrates off central west Florida provides documentation of modern epifaunal communities on a low-gradient carbonate slope. Three large-scale biofacies occur in soft-sediment carbonate environments between 200 and 2,000 m: an Echinoderm biofacies (200–550 m) dominated by a diverse assemblage of echinoderms, gastropods, and decapod crustaceans; a Penaeid shrimp–conical mound biofacies (550–1,200 m) characterized by large bioturbation structures; and a Microbial mat biofacies (1,200–2,000 m) with only rare epifaunal invertebrates. A fourth, hard-substrate biofacies reflects the presence of localized Miocene and Pleistocene hardgrounds in water depths of 200–600 m. This illustrates that hard-substrate biofacies may be laterally correlative with soft-sediment biofacies in a slope setting, thus producing a mosaic of contrasting faunal associations. All four biofacies have low population densities, presumably as a consequence of relatively low surface productivity. All four biofacies also show biogeographic affinity with other faunas at intermediate depths in the Caribbean region. Depth-related faunal transitions on the west Florida slope correlate with substrate and current velocity. Decreasing species diversity and abundance and a biofacies transition from suspension-feeding to deposit-feeding assemblages correlate with increasing depth, a decrease in mean grain size, and an increase in organic content of the sediment. This biofacies model may provide a modern analogue for faunas of ancient low-gradient slopes such as those of Cretaceous “shelf-sea” chalks of northwestern Europe.