Hostname: page-component-cc8bf7c57-fxdwj Total loading time: 0 Render date: 2024-12-11T22:08:21.301Z Has data issue: false hasContentIssue false

Benthic invertebrates of a modern carbonate ramp: a preliminary survey

Published online by Cambridge University Press:  20 May 2016

Linda C. Ivany
Affiliation:
Department of Geology, Syracuse University, Syracuse, New York 13244-1070
Cathryn R. Newton
Affiliation:
Department of Geology, Syracuse University, Syracuse, New York 13244-1070
Henry T. Mullins
Affiliation:
Department of Geology, Syracuse University, Syracuse, New York 13244-1070

Abstract

A preliminary survey of benthic invertebrates off central west Florida provides documentation of modern epifaunal communities on a low-gradient carbonate slope. Three large-scale biofacies occur in soft-sediment carbonate environments between 200 and 2,000 m: an Echinoderm biofacies (200–550 m) dominated by a diverse assemblage of echinoderms, gastropods, and decapod crustaceans; a Penaeid shrimp–conical mound biofacies (550–1,200 m) characterized by large bioturbation structures; and a Microbial mat biofacies (1,200–2,000 m) with only rare epifaunal invertebrates. A fourth, hard-substrate biofacies reflects the presence of localized Miocene and Pleistocene hardgrounds in water depths of 200–600 m. This illustrates that hard-substrate biofacies may be laterally correlative with soft-sediment biofacies in a slope setting, thus producing a mosaic of contrasting faunal associations. All four biofacies have low population densities, presumably as a consequence of relatively low surface productivity. All four biofacies also show biogeographic affinity with other faunas at intermediate depths in the Caribbean region. Depth-related faunal transitions on the west Florida slope correlate with substrate and current velocity. Decreasing species diversity and abundance and a biofacies transition from suspension-feeding to deposit-feeding assemblages correlate with increasing depth, a decrease in mean grain size, and an increase in organic content of the sediment. This biofacies model may provide a modern analogue for faunas of ancient low-gradient slopes such as those of Cretaceous “shelf-sea” chalks of northwestern Europe.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, R. T., and Dance, S. P. 1986. Compendium of Seashells. Madison, Tokyo, 411 p.Google Scholar
Agassiz, A. 1873. Revision of the Echini (Parts 3, 4). Museum of Comparative Zoology, Illustrated Catalogue, 7:383762.Google Scholar
Agassiz, A. 1888. Three cruises of the U.S. Coast and Geodetic Survey Steamer “Blake” V. II. Houghton Mifflin, Boston, 220 p.Google Scholar
Agassiz, A., de Pourtalès, L. F., and Lyman, T. 1878. Reports on the dredging operations of the U. S. Coast Survey Steamer Blake, II [echini, corals, crinoids, and ophiurans]. Museum of Comparative Zoology, Bulletin, 5:181238.Google Scholar
Ahr, W. M. 1973. The carbonate ramp: an alternative to the shelf model. Gulf Coast Association of Geological Societies, Transactions, 23:221225.Google Scholar
Blake, N. J. 1979. Macroinfaunal molluscs, p. 667698. In The Mississippi, Alabama, and Florida Outer Continental Shelf, MAFLA, 1977/78, Volume 2A. Compendium of Work Element Reports, Dames and Moore, Bureau of Land Management Contract no. AA550-CT-7-34, Washington, D.C.Google Scholar
Blake, N. J., and Doyle, L. J. 1983. Infaunal-sediment relationships at the shelf–slope break, p. 381389. In Stanley, D. J. and Moore, G. T. (eds.), The Shelfbreak: Critical Interface on Continental Margins. Society of Economic Paleontologists and Mineralogists, Special Publication 33.CrossRefGoogle Scholar
Bottjer, D. J., and Carter, J. G. 1980. Functional and phylogenetic significance of projecting periostracal structures in the Bivalvia (Mollusca). Journal of Paleontology, 54:200216.Google Scholar
Bowen, R. 1966. Paleotemperature Analysis. Elsevier, Amsterdam, 265 p.Google Scholar
Bromley, R. G. 1990. Trace Fossils: Biology and Taphonomy. Unwin Hyman, London, 280 p.Google Scholar
Brönniman, P. 1972. Remarks on the classification of fossil anomuran coprolites. Palëontologische Zeitschrift, 46:99103.CrossRefGoogle Scholar
Brönniman, P., and Zaninetti, L. 1972. New names for favreine and parafavreine thalassinid anomuran (Crustacea Decapoda) coprolites from the Jurassic of Greece and Algeria. Palëontologische Zeitschrift, 46:221224.CrossRefGoogle Scholar
Brower, J. C. 1987. The relations between allometry, phylogeny, and functional morphology in some calceocrinid crinoids. Journal of Paleontology, 61:9991032.CrossRefGoogle Scholar
Capurro, L. R. A., and Reid, J. L. 1972. Contributions on the physical oceanography of the Gulf of Mexico. Texas A & M University Oceanographic Studies, 2:1288.Google Scholar
Carter, R. M. 1972. Adaptations of British chalk Bivalvia. Journal of Paleontology, 46:325340.Google Scholar
Collard, S. B., and D'Asaro, C. N. 1973. Benthic invertebrates of the eastern Gulf of Mexico, p. III G-1–27. In Jones, J. I., Ring, R. E., Rinkel, M. D., and Smith, R. E. (eds.), A Summary of Knowledge of the Eastern Gulf of Mexico. Florida Institute of Oceanography, St. Petersburg.Google Scholar
Dall, W. 1886. Report on the results of dredging by the U. S. Coast Survey Steamer Blake, XXIX. Report on the Mollusca, Part I. Brachiopoda and Pelecypoda. Museum of Comparative Zoology, 12:171318.Google Scholar
De Ridder, C., and Lawrence, J. M. 1982. Food and feeding mechanisms: Echinoidea, p. 57115. In Jangoux, M. and Lawrence, J. M. (eds.), Echinoderm Nutrition. A. A. Balkema, Rotterdam.Google Scholar
Endler, C. N., Basta, D. J., and La Pointe, T. F. 1985. Gulf of Mexico Coastal and Ocean Zones Strategic Assessment: Data Atlas. NOAA, Washington, D.C., p. 1.01.16, 2.0–2.05, 3.0–3.73, 4.0–4.31, 5.0–5.33, 6.0–6.07.Google Scholar
Erdman, R. B., Blake, N. J., Lockhart, F. D., Lindberg, W. J., Perry, H. M., and Waller, R. S. 1991. Comparative reproduction of the deep-sea crabs Chaceon fenneri and C. quinquedens (Brachyura: Geryonidae) from the Northeast Gulf of Mexico. Invertebrate Reproduction and Development, 19:175184.Google Scholar
Gallardo, V. A. 1977. Large benthic microbial communities in sulphide biota under the Peru–Chile subsurface countercurrent. Nature, 268:331332.Google Scholar
Galtsoff, P. D. (ed.). 1954. Gulf of Mexico: its origin, waters, and marine life. Fishery Bulletin, 89, 55 p.Google Scholar
Gardulski, A. F. 1987. Climatic and oceanographic controls on the Neogene sedimentary framework of the outer west Florida carbonate ramp. Unpubl. Ph.D. dissertation, Syracuse University, Syracuse, New York, 229 p.Google Scholar
Gardulski, A. F., Gowen, M. H., Milsark, A., Weiterman, S. D., Wise, S. W., and Mullins, H. T. 1991. Evolution of a deep-water carbonate platform: Upper Cretaceous to Pleistocene sedimentary environments on the west Florida margin. Marine Geology, 101:163179.CrossRefGoogle Scholar
Gardulski, A. F., Mullins, H. T., and Weiterman, S. 1990. Carbonate mineral cycles generated by foraminiferal and pteropod response to Pleistocene climate: west Florida ramp slope. Sedimentology, 37:727743.Google Scholar
Håkansson, E., Bromley, R. G., and Perch-Nielsen, K. 1974. Maastrichtian chalk of north-west Europe—a pelagic shelf sediment, p. 211233. In Hsü, K. J. and Jenkins, H. C. (eds.), Pelagic Sediments: On Land and Under the Sea. Special Publication 1, International Association of Sedimentologists. Blackwell, London.Google Scholar
Hancock, J. M. 1975. The sequence of facies in the Upper Cretaceous of northern Europe compared with that in the Western Interior, p. 83118. In Caldwell, W. G. E. (ed.), The Cretaceous System in the Western Interior of North America. Geological Association of Canada, Special Paper 13.Google Scholar
Heezen, B. C., and Hollister, C. D. 1971. The Face of the Deep. Oxford University Press, New York, 659 p.Google Scholar
Hickman, C. S. 1976. Pleurotomaria (Archeogastropoda) in the Eocene of the northeastern Pacific: a review of Cenozoic biogeography and ecology of the genus. Journal of Paleontology, 50:10901102.Google Scholar
Hickman, C. S. 1984. Pleurotomaria: pedigreed perseverance, p. 225231. In Eldredge, N. and Stanley, S. M. (eds.), Living Fossils. Springer-Verlag, New York.Google Scholar
Hine, A. C., and Mullins, H. T. 1983. Modern carbonate shelf-slope breaks, p. 169188. In Stanley, D. J. and Moore, G. T. (eds.), The Shelfbreak: Critical Interface on Continental Margins. Society of Economic Paleontologists and Mineralogists, Special Publication 33.Google Scholar
Hyman, L. H. 1955. The Invertebrates: Echinodermata, 4. McGraw-Hill, New York, 763 p.Google Scholar
Jablonski, D., and Bottjer, D. J. 1983. Soft-bottom epifaunal suspension-feeding assemblages in the Late Cretaceous: implications for the evolution of benthic paleocommunities, p. 747812. In Tevesz, M. J. S. and McCall, P. L. (eds.), Biotic Interactions in Recent and Fossil Benthic Communities. Plenum, New York.Google Scholar
Jangoux, M. 1982. Food and feeding mechanisms: Asteroidea, p. 117159. In Jangoux, M. and Lawrence, J. M. (eds.), Echinoderm Nutrition. A. A. Balkema, Rotterdam.Google Scholar
Jannasch, H. W., and Wirsen, C. O. 1981. Morphological survey of microbial mats near deep-sea thermal vents. Applied and Environmental Microbiology, 41:528538.Google Scholar
Kennedy, W. J. 1978. Cretaceous, p. 280322. In McKerrow, W. S. (ed.), The Ecology of Fossils. MIT Press, Cambridge, Massachusetts.Google Scholar
Kennedy, W. J., and Garrison, R. E. 1975. Morphology and genesis of nodular chalks and hardgrounds in the Upper Cretaceous of southern England. Sedimentology, 22:311386.Google Scholar
La Barbera, M. 1981. The ecology of Mesozoic Gryphaea, Exogyra, and Ilmatogyra (Bivalvia: Mollusca) in a modern ocean. Paleobiology, 7:510526.CrossRefGoogle Scholar
Lewis, J. B. 1963. The food of some deep-water echinoids from Barbados. Bulletin of Marine Science, 13:260363.Google Scholar
Lewis, R. 1980. Taphonomy, p. 2739. In Broadhead, T. W. and Waters, J. A. (eds.), Echinoderms. University of Tennessee Department of Geological Sciences, Studies in Geology 3.Google Scholar
Lindberg, W. J., et al. 1988. Videotapes of submersible dives from the west Florida slope. Journal of Paleontology data repository, University of Illinois, University Library Archives, Urbana.Google Scholar
Lockhart, F. D., Lindberg, W. J., Blake, N. J., Erdman, R. B., Perry, H. M., and Waller, R. S. 1990. Distributional differences and population similarities for two deep-sea crabs (Family Geryonidae) in the northeastern Gulf of Mexico. Canadian Journal of Fisheries and Aquatic Sciences, 47:21122122.CrossRefGoogle Scholar
Lowenstam, H. C., and Epstein, S. 1954. Paleotemperatures of the post-Aptian Cretaceous as determined by the oxygen isotope method. Journal of Geology, 62:207248.CrossRefGoogle Scholar
Messing, C. G. 1985. Submersible observations of deep-water crinoid assemblages in the tropical western Atlantic Ocean, p. 185193. In Keegan, B. F. and O'Connor, B. D. S. (eds.), Fifth International Echinoderm Conference Proceedings. A. A. Balkema, Rotterdam.Google Scholar
Meyer, D. L. 1982. Food and feeding mechanisms: Crinozoa, p. 2542. In Jangoux, M. and Lawrence, J. M. (eds.), Echinoderm Nutrition. A. A. Balkema, Rotterdam.Google Scholar
Meyer, D. L., and Macurda, D. B. Jr. 1980. Ecology and distribution of the shallow-water crinoids of Palau and Guam. Micronesica, 16:5999.Google Scholar
Meyer, D. L., Messing, C. G., and Macurda, D. B. Jr. 1978. Zoogeography of tropical western Atlantic Crinoidea (Echinodermata). Bulletin of Marine Science, 28:412441.Google Scholar
Moore, H. B. 1932. The fecal pellets of the Anomura. Royal Society of Edinburgh, Proceedings, 52:296308.Google Scholar
Mortensen, T. 1928. A Monograph of the Echinoidea I. C. A. Reitzel, Copenhagen, 551 p.Google Scholar
Mortensen, T. 1935. A Monograph of the Echinoidea II. C. A. Reitzel, Copenhagen, 647 p.Google Scholar
Mortensen, T. 1948. A Monograph of the Echinoidea IV (1). C. A. Reitzel, Copenhagen, 378 p.Google Scholar
Mullins, H. T., Gardulski, A. F., and Hine, A. C. 1986. Catastrophic collapse of the west Florida carbonate platform margin. Geology, 14:167170.Google Scholar
Mullins, H. T., Gardulski, A. F., Hinchey, E. J., and Hine, A. C. 1988a. The modern carbonate ramp slope of central west Florida. Journal of Sedimentary Petrology, 58:273290.Google Scholar
Mullins, H. T., Gardulski, A. F., Hine, A. C., Melillo, A. J., Wise, S. W. Jr., and Applegate, J. 1988b. Three-dimensional sedimentary framework of the carbonate ramp slope of central west Florida: a sequential seismic stratigraphic perspective. Geological Society of America Bulletin, 100:514533.Google Scholar
Mullins, H. T., Gardulski, A. F., Wise, S. W., and Applegate, J. 1987. Middle Miocene oceanographic event in the eastern Gulf of Mexico: implications for seismic stratigraphic succession and Loop Current/Gulf Stream circulation. Geological Society of America Bulletin, 98:702713.Google Scholar
Newton, C. R., Mullins, H. T., Gardulski, A. F., Hine, A. C., and Dix, G. R. 1987. Coral mounds on the west Florida slope: unanswered questions regarding the development of deep-water banks. Palaios, 2:359367.Google Scholar
Oliver, G., and Allen, J. A. 1979a. Functional and adaptive morphology of the deep-sea species of the Arcacea (Mollusca: Bivalvia) from the Atlantic. Royal Society of London Philosophical Transactions, Series B, 291:4576.Google Scholar
Oliver, G., and Allen, J. A. 1979b. Functional and adaptive morphology of the deep-sea species of the Limopsidae (Bivalvia: Arcoida) from the Atlantic. Royal Society of London Philosophical Transactions, Series B, 291:77125.Google Scholar
Pequegnat, W., and Chace, F. 1970. Contributions to the biology of the Gulf of Mexico. Texas A & M University Oceanographic Studies, 1.Google Scholar
Phelan, T. 1970. A field guide to the cidaroid echinoids of the northwestern Atlantic Ocean, Gulf of Mexico, and the Caribbean Sea. Smithsonian Contributions to Zoology, 40:122.CrossRefGoogle Scholar
Read, J. F. 1982. Carbonate platforms of passive (extensional) continental margins: types, characteristics and evolution. Tectonophysics, 81:195212.Google Scholar
Rowe, G., and Menzel, D. 1971. Quantitative benthic samples from the deep Gulf of Mexico with some comments on the measurement of deep sea biomass. Bulletin of Marine Science, 21:556566.Google Scholar
Rubenstein, D. I., and Koehl, M. A. R. 1977. The mechanisms of filter feeding: some theoretical considerations. American Naturalist, 111:981994.Google Scholar
Senobari-Daryan, B. 1979. Anomuran coprolites from the Upper Triassic of the Osterhorn Mountains (Hintersee/Salzburg, Austria). Wien, Annalen der naturhistorisches Museum, 82:99107.Google Scholar
Senobari-Daryan, B., and Stanley, G. D. Jr. 1986. Thalassinid anomuran micro-coprolites from Upper Triassic carbonate rocks of central Peru. Lethaia, 19:343354.Google Scholar
Smith, C. R., Jumars, P. A., and De Master, D. J. 1986. In situ studies of megafaunal mounds indicate rapid sediment turnover and community response at the deep-sea floor. Nature, 323:251253.Google Scholar
Thompson, J. B., Mullins, H. T., Newton, C. R., and Vercoutere, T. L. 1985. Alternative biofacies model for dysaerobic communities. Lethaia, 18:167179.Google Scholar
Uchupi, E. 1967. Bathymetry of the Gulf of Mexico. Gulf Coast Association of Geological Societies, Transactions, 17:161172.Google Scholar
Urey, H. C., Lowenstam, H. A., Epstein, S., and McKinney, C. R. 1951. Measurement of paleotemperatures and temperatures of the Cretaceous of England, Denmark, and the southeastern United States. Geological Society of America Bulletin, 62:399416.Google Scholar
Vermeij, G. J. 1977. The Mesozoic marine revolution: evidence from snails, predators, and grazers. Paleobiology, 3:245258.Google Scholar
Vermeij, G. J. 1978. Biogeography and Adaptation. Harvard University Press, Cambridge, 332 p.Google Scholar
Warner, G. F. 1977. On the shapes of passive suspension feeders, p. 567576. In Keegan, B. F., Ceidigh, P. O., and Boaden, P. J. S. (eds.), Biology of Benthic Organisms. Pergamon, New York.Google Scholar
Warner, G. F. 1979. Aggregation in echinoderms, p. 375396. In Larwood, G. and Rosen, B. R. (eds.), Biology and Systematics of Colonial Organisms. Systematics Association Special Volume 11. Academic Press, New York.Google Scholar
Williams, A. B. 1984. Shrimp, Lobsters, and Crabs of the Atlantic Coast of the Eastern United States. Smithsonian Institution Press, Washington, 550 p.Google Scholar
Wilson, J. L. 1975. Carbonate Facies in Geologic History. Springer-Verlag, New York, 471 p.Google Scholar
Young, D. K., Jahn, W. H., Richardson, M. D., and Lohanick, A. W. 1985. Photographs of deep-sea Lebensspuren: a comparison of sedimentary province in the Venezuela Basin, Caribbean sea. Marine Geology, 68:269301.Google Scholar