Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-27T20:21:00.119Z Has data issue: false hasContentIssue false

Astroniumxylon, Schinopsixylon, and Parametopioxylon n. gen. fossil woods from upper Cenozoic of Argentina: taxonomic revision, new taxon and new records

Published online by Cambridge University Press:  17 December 2019

M. Jimena Franco*
Affiliation:
Laboratorio de Paleobotánica, Centro de Investigación Científica y de Transferencia Tecnológica a la Producción, Consejo Nacional de Investigaciones Científicas y Técnicas CICYTTP (CONICET-Prov. ER-UADER), España 149, E3105BWA Diamante, Entre Ríos, Argentina , , , Facultad de Ciencia y Tecnología, Universidad Autónoma de Entre Ríos, Sede Diamante, Tratado del Pilar 314, 3105, Diamante, Entre Ríos, Argentina
Eliana Moya
Affiliation:
Laboratorio de Paleobotánica, Centro de Investigación Científica y de Transferencia Tecnológica a la Producción, Consejo Nacional de Investigaciones Científicas y Técnicas CICYTTP (CONICET-Prov. ER-UADER), España 149, E3105BWA Diamante, Entre Ríos, Argentina , , , Facultad de Ciencia y Tecnología, Universidad Autónoma de Entre Ríos, Sede Diamante, Tratado del Pilar 314, 3105, Diamante, Entre Ríos, Argentina
Mariana Brea
Affiliation:
Laboratorio de Paleobotánica, Centro de Investigación Científica y de Transferencia Tecnológica a la Producción, Consejo Nacional de Investigaciones Científicas y Técnicas CICYTTP (CONICET-Prov. ER-UADER), España 149, E3105BWA Diamante, Entre Ríos, Argentina , , , Facultad de Ciencia y Tecnología, Universidad Autónoma de Entre Ríos, Sede Diamante, Tratado del Pilar 314, 3105, Diamante, Entre Ríos, Argentina Cátedra de Paleobotánica, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata (FCNyM-UNLP), Calle 122 y 60 s/n, 1900, La Plata, Buenos Aires, Argentina
Camila Martínez Martínez
Affiliation:
Laboratorio de Paleobotánica, Centro de Investigación Científica y de Transferencia Tecnológica a la Producción, Consejo Nacional de Investigaciones Científicas y Técnicas CICYTTP (CONICET-Prov. ER-UADER), España 149, E3105BWA Diamante, Entre Ríos, Argentina , , , Facultad de Ciencia y Tecnología, Universidad Autónoma de Entre Ríos, Sede Diamante, Tratado del Pilar 314, 3105, Diamante, Entre Ríos, Argentina
*
*Corresponding author

Abstract

This paper presents new descriptions of Anacardiaceae fossil woods from the Ituzaingó Formation (late Cenozoic) at the Toma Vieja, Curtiembre, and Arroyo El Espinillo localities, Argentina. We describe eight silicified woods assigned to four different species in three genera, one of which, Parametopioxylon crystalliferum n. gen. n. sp., is new. Similarities between these three genera and the six Anacardiaceae species previously recorded from the late Cenozoic in northeastern Argentina are investigated using multivariate analysis techniques (correspondence and cluster analysis). Our study is based on 33 characters scored for 17 fossil specimens (10 Astroniumxylon Brea, Aceñolaza, and Zucol 2001; five Schinopsixylon Lutz, 1979; and two Parametopioxylon n. gen.) and four extant species (Astronium balansae Engl., Astronium urundeuva Engl., Schinopsis balansae Engl., and Metopium sp.). Our main goal is to determine the wood anatomical features useful for distinguishing among these species. Results of the multivariate analyses support the previous classification where Schinopsixylon is distinguished from Astroniumxylon by having exclusively paratracheal axial parenchyma, ≥30% multiseriate rays, and multiseriate rays that are ≥5 cells wide and commonly 301–400 μm in height. Additionally, we propose that Schinopsixylon heckii Lutz, 1979 is synonymous with S. herbstii Lutz, 1979. A diagnostic key for the fossil species studied is given. Wood anatomy of Anacardiaceae fossil woods from Argentina (late Cenozoic) suggests a warm, dry to semi-humid climate for this region, supporting previous studies.

Type
Articles
Copyright
Copyright © 2019, The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agarwal, M., and Gupta, S., 2008, Wood Anatomy of Sapindales: Dehra Dun, India, Bishen Singh Mahendra Pal Singh, 172 p.Google Scholar
Anzótegui, L.M., 1990, Estudio Palinológico de la Formación Paraná (Mioceno Superior) “Pozo Josefina,” Provincia de Santa Fe, Argentina. II parte: paleocomunidades: Facena, v. 9, p. 7586.Google Scholar
Anzótegui, L.M., and Aceñolaza, P.G., 2008, Macrofloristic assemblage of the Paraná Formation Middle–Upper Miocene) in Entre Ríos (Argentina): Neues Jahrbuch fur Geologie und Paläontology, v. 248, p. 159170.CrossRefGoogle Scholar
APG IV., 2016, An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV: Botanical Journal of the Linnean Society, v. 181, p. 120.CrossRefGoogle Scholar
Avise, J.C., and Johns, G., 1999, Proposal for a standardized temporal scheme of biological classification for extant species: Proceedings of the National Academy of Sciences, v. 96, p. 73587363.CrossRefGoogle ScholarPubMed
Baas, P., and Wheeler, E.A., 2011, Wood anatomy and climate change. Chapter 6, in Hodkinson, T., Jones, M., Waldren, S., and Parnell, J., eds., Climate Change, Ecology and Systematics: Cambridge, Cambridge University Press, p. 141155.CrossRefGoogle Scholar
Berchtold, B.V. von, and Presl, C.B., 1820, O Prirozenosti Rostlin aneb Rostlinar: Prague, Krala Wiljma Endersa, p. 266.Google Scholar
Brea, M., 1999, Leños fósiles de Anacardiaceae y Mimosaceae de la Formación El Palmar (Pleistoceno superior), del Departamento Concordia, provincia de Entre Ríos: Ameghiniana, v. 36, p. 6369.Google Scholar
Brea, M., and Franco, M.J., 2013, El registro fósil de Anacardiaceae en el Cenozoico Tardío del Noreste argentino: Acta Geológica Lilloana, v. 25, p. 2136.Google Scholar
Brea, M., and Zucol, A.F., 2011, The Paraná-Paraguay Basin: geology and paleoenvironments, in Albert, J., and Reis, R., eds., Historical Biogeography of Neotropical Fresh Water Fishes: Londres, University of California Press, p. 6987.Google Scholar
Brea, M., Aceñolaza, P.G., and Zucol, A.F., 2001, Estudio paleoxilológico en la Formación Paraná, Entre Ríos, Argentina. XI Simposio Argentino de Paleobotánica y Palinología: Asociación Paleontológica Argentina, Publicación Especial, v. 8, p. 717.Google Scholar
Brea, M., Zucol, A.F., and Patterer, N., 2010, Fossil woods from late Pleistocene sediments from El Palmar Formation, Uruguay Basin, eastern Argentina: Review of Palaeobotany and Palynology, v. 163, p. 3551.CrossRefGoogle Scholar
Brown, R., 1818, Observations, systematical and geographical, on Professor Christian Smith's collection of plants from the vicinity of the River Congo, in Tuckey, J.H., ed., Narrative of an expedition to explore the River Zaire: London, John Murray, p. 420485.Google Scholar
Browne, P., 1756, The Civil and Natural History of Jamaica in Three Parts: London, Osborn & Shipton, 503 p.Google Scholar
Brunetto, E., Noriega, J.I., and Brandoni, D., 2013, Sedimentología, estratigrafía y edad de la Formación Ituzaingó en la provincia de Entre Ríos, Argentina, in Brandoni, D., and Noriega, J.I., eds., El Neógeno de la Mesopotamia Argentina: Publicación Especial de la Asociación Paleontológica Argentina No. 14, p. 1327.Google Scholar
Collinson, M.E., 1986, Use of modern generic names for plants fossils, in Spicer, R.E., and Thomas, B.A., eds., Systematic and Taxonomic Approaches in Palaeobotany: Systematics Association Special Volume 31, p. 91104.Google Scholar
Crisci, J., and López Armengol, M.F., 1983, Introducción a la teoría y práctica de la taxonomía numérica: Secretaría General de la Organización de los Estados Americanos, Monografía No. 26, Washington, DC, 132 p.Google Scholar
DRYFLOR, 2016, Plant diversity patterns in neotropical dry forests and their conservation implications: Science, v. 353, p. 13831387. doi:10.1126/science.aaf5080CrossRefGoogle Scholar
Engler, A., 1881, Uber die morphologischen Verhältnisse und die geographische Verbreitung der Gattung Rhus, wie der mit ihr verwandten, lebenden und ausgestorbenen Anacardiaceae: Botanische Jahrbücher für Systematik, Pflanzengeschichte und Pflanzengeographie, v. 1, p. 365426.Google Scholar
Engler, A., 1883, Burseraceae et Anacardiaceae, in De Candolle, A.L.P., and De Candolle, A.C., Monographiae Phanerogamarum 4: Paris, Sumptibus G. Masson, 464 p.Google Scholar
Engler, A., 1885, Eine neue Schinopsis: Botanische Jahrbücher für Systematik, Pflanzengeschichte und Pflanzengeographie, v. 6, p. 286.Google Scholar
Engler, H.G.A., 1876, Anacardiaceae: Flora Brasiliensis, v. 12, p. 367418.Google Scholar
Franco, M.J., 2009, Leños fósiles de Anacardiaceae en la Formación Ituzaingó (Plioceno), Toma Vieja, Paraná, Entre Ríos, Argentina: Ameghiniana, v. 46, p. 587604.Google Scholar
Franco, M.J., 2011, Estudios paleobotánicos de la Formación Ituzaingó (Plioceno–Pleistoceno), Cuenca del Río Paraná, Argentina [PhD thesis]: Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, 368 p.Google Scholar
Franco, M.J., and Brea, M., 2008, Leños fósiles de la Formación Paraná (Mioceno medio), Toma Vieja, Paraná, Entre Ríos, Argentina: registro de bosques secos mixtos: Ameghiniana, v. 45, p. 699718.Google Scholar
Franco, M.J., Brea, M., Orfeo, O., Zucol, A.F., 2013, La Paleoflora de la Formación Ituzaingó (PliocenoPleistoceno), Argentina, in Brandoni, D., and Noriega, J.I., eds., El Neógeno de la Mesopotamia Argentina. Publicación Especial 14. Buenos Aires, Asociación Paleontológica Argentina, p. 4155.Google Scholar
Franklin, J., Andrade, R., Daniels, M., Fairbairn, P., Gillespie, T., Gonzalez, G., Gonzalez, O., Imbert, D., Kapos, V., Kelly, D.L., Marcano-Vega, H., Meléndez-Ackerman, E.J., McLaren, K.P., McDonald, M.A., Ripplinger, J., Rojas-Sandoval, J., Ross, M.S., Ruiz, J., Steadman, D.W., Tanner, E.V.J., Terrill, I., and Vennetier, M., 2018, Geographical ecology of dry forest tree communities in the West Indies: Journal of Biogeography, v. 45, p. 11681181.CrossRefGoogle Scholar
Giménez, A.M., Calatayu, F., Diaz Zirpolo, J., Figueroa, M.E., and Gonzalez, D., 2015, Anatomía comparada del leño de tres especies nativas de Schinopsis (Anacardiaceae): Boletín de la Sociedad Argentina de Botánica, v. 50, p. 323335.Google Scholar
Gregory, M., 1994, Bibliography of systematic wood anatomy of dicotyledons: IAWA Journal, Supplement, v. 1, p. 1265.Google Scholar
Gregory, M., Poole, I., and Wheeler, E.A., 2009, Fossil dicot wood names: an annotated list with full bibliography: IAWA Journal, Supplement, v. 6, p. 1220.Google Scholar
Gupta, S., and Agarwal, M., 2008, Wood anatomy of Anacardiaceae from India with special reference to the systematic position of Rhus: IAWA Journal, v. 29, p. 79106.CrossRefGoogle Scholar
Halffter, G., and Morrone, J.J., 2017, An analytical review of Halffter's Mexican transition zone, and its relevance for evolutionary biogeography, ecology and biogeographical regionalization: Zootaxa, v. 4226, p. 146.CrossRefGoogle ScholarPubMed
Hammer, Ø., Harper, D.A.T., and Ryan, P.D., 2001, PAST: Paleontological statistics software package for education and data analysis: Palaeontologia Electronica, v. 4, no.1, p. 19. http://palaeo-electronica.org/2001_1/past/issue1_01.htmGoogle Scholar
Heimsch, C., 1942, Comparative anatomy of the secondary xylem in the “Gruinales” and “Terebinthales” of Wettstein with reference to taxonomic grouping: Lilloa, v. 18, p. 83198.Google Scholar
Herbert, T.D., Lawrence, K.T., Tzanova, A., Peterson, L.C., Caballero-Gill, R., and Kelly, C.S., 2016, Late Miocene global cooling and the rise of modern ecosystems: Nature Geoscience, v. 9, p. 843847.CrossRefGoogle Scholar
IAWA Committee., 1989, IAWA list of microscopic feature for hardwood identification: International Association of Wood Anatomists, Bulletin, v. 10, p. 219332.Google Scholar
InsideWood., 2004–onwards, http://insidewood.lib.ncsu.edu/search [Sept 2017].Google Scholar
Jacquin, N.J., 1760, Enumeratio systematica plantarum, quas in insulis Caribaeis vicinaque Americes continente detexit novas, aut jam cognitas emendavit: Zug, Switzerland, Inter Documentation Company AG, 46 p.Google Scholar
Lutz, A.I., 1979, Maderas de Angiospermas (Anacardiaceae y Leguminosae) del Plioceno de la Provincia de Entre Rios, Argentina: Facena, v. 3, p. 3963.Google Scholar
Martínez, L.C.A., and Pujana, R.R., 2010, Sobre la presencia de Resinaxylon schinusoides Pujana en la Formación San Julián (Oligoceno), Santa Cruz, Patagonia Argentina: Ameghiniana, v. 47, p. 535539.CrossRefGoogle Scholar
Martínez Millán, M., 2000, Biogeografía histórica (Terciario y Cuaternario) de Anacardiaceae con base en caracteres anatómicos de la madera [Bachelor Thesis]: Mexico City, Universidad Nacional Autónoma de México, 72 p.Google Scholar
Metcalfe, C.R., and Chalk, L., 1950, Anatomy of the Dicotyledons v. 2: Oxford, Claredon Press, 1500 p.Google Scholar
Morrone, J.J., 2001, Biogeografía de América Latina y el Caribe. Manueles y Tesis 3: Zaragoza, España, Sociedad Entomológica Aragonesa, 148 p.Google Scholar
Muñoz, J.D., 2000, Anacardiaceae, in: Hunziker, A.T., ed., Flora Fanerogámica: Proflora, Córdoba No. 65, p. 128.Google Scholar
Passalia, M.G., Caviglia, N., and Vera, E.I., 2019, Lithraea australis (Berry) comb. nov. (Anacardiaceae) from the upper section of Ñirihuau Formation (middle Miocene), Patagonia: Review of Paleobotany and Palynology, v. 266, p. 111.CrossRefGoogle Scholar
Pennington, R.T., Prado, D.E., and Pendry, C.A., 2000, Neotropical seasonally dry forest and Quatenary vegetation changes: Journal of Biogeography, v. 27, p. 261273.CrossRefGoogle Scholar
Pennington, R.T., Lavin, M., Prado, D.E., Pendry, C.A., Pell, S.K., and Butterworth, C.A., 2004, Historical climate change and speciation: neotropical seasonally dry forest plants show patterns of both Tertiary and Quaternary diversification: Philosophical Transactions of the Royal Society of London. Series B. Biological Sciences, v. 359, p. 515538.CrossRefGoogle ScholarPubMed
Poole, I., 2002, Systematics of Cretaceous and Tertiary Nothofagoxylon: implications for Southern Hemisphere biogeography and evolution of the Nothofagaceae: Australian Systematic Botany, v. 15, p. 247276.CrossRefGoogle Scholar
Prado, D.E., 2000, Seasonally dry forest of tropical South America: from forgotten ecosystems to a new phytogeographic unit: Edinburgh Journal of Botany v. 57, p. 437461.CrossRefGoogle Scholar
Prado, D.E., and Gibbs, P.E., 1993, Patterns of species distributions in the dry seasonal forests of South America: Annals of the Missouri Botanical Garden, v. 80, p. 902927.CrossRefGoogle Scholar
Pujana, R.R., 2009, Fossil woods from the Oligocene of southwestern Patagonia (Río Leona Formation). Atherospermataceae, Myrtaceae, Leguminosae and Anacardiaceae: Ameghiniana v. 46, p. 523535.Google Scholar
Pujana, R.R., Martínez, L.C.A., García Massini, J.L., Di Orio, O., and Penas Steinhardt, A., 2014a, Legume (Mimosoideae) fossil woods from the Late Miocene (Salicas Formation) of Northwestern Argentina: Revista Brasileira de Paleontologia, v. 17, p. 317326.CrossRefGoogle Scholar
Pujana, R.R., Santillana, N.S., and Marenssi, S.A., 2014b, Conifer fossil woods from the La Meseta Formation (Eocene of Western Antarctica): evidence of Podocarpaceae- dominated forests: Review of Palaeobotany and Palynology, v. 200, p. 122137.CrossRefGoogle Scholar
Schweingruber, F.H., Börner, A., and Schulze, E.D., 2011, Atlas of Stem Anatomy in Herbs, Shrubs and Trees. Volume 1: Berlin, Heidelberg, Springer-Verlag, 425 p.CrossRefGoogle Scholar
Stevens Goddard, A., and Carrapa, B., 2018, Effects of Miocene–Pliocene global climate changes on continental sedimentation: a case study from the southern Central Andes: Geology v. 46, p. 647650.CrossRefGoogle Scholar
Stevens, P.F., 2001–onwards, Angiosperm Phylogeny Website, Version 9. http://www.mobot.org/MOBOT/research/APweb/ [June 2018]Google Scholar
Terrazas, T., 1994, Wood anatomy of the Anacardiaceae: ecological and phylogenetic interpretation [PhD. Thesis]: Chapel Hill, NC, University of North Carolina, 321 p.Google Scholar
Terrazas, T., 1999, Anatomía de la madera de Anacardiaceae con énfasis en los géneros americanos: Boletín de la Sociedad Botánica de México, v. 64, 103109.Google Scholar
Terrazas, T., and Wendt, T., 1995, Systematic wood anatomy of the Genus Tapirira Aublet (Anacardiaceae)—a numerical approach: Brittonia, v. 47, p. 109129.CrossRefGoogle Scholar
Tortorelli, L.A., 1956, Maderas y bosques argentinos: Buenos Aires, Editorial Acme, 515 p.Google Scholar
Wagemann, W., 1948, Maderas Chilenas. Contribución a su anatomía e identificación: Lilloa v. 16, p. 263375.Google Scholar
Wheeler, E.A., 2011, InsideWood—a web resource for hardwood anatomy: IAWA Journal, v. 32, p. 199211.CrossRefGoogle Scholar
Zuloaga, F.O., and Morrone, O., 1999, Catálogo de las Plantas Vasculares de la Argentina: Dicotyledoneae Monographs in Systematic Botany, Missouri Botanical Garden, v. 74, p. 11246.Google Scholar