Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T21:20:55.491Z Has data issue: false hasContentIssue false

An early Cambrian shallow-marine ichnofauna from the Puncoviscana Formation of northwest Argentina: the interplay between sophisticated feeding behaviors, matgrounds and sea-level changes

Published online by Cambridge University Press:  20 May 2016

Luis A. Buatois
Affiliation:
Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, SK S7N 5E2, Canada,
María Gabriela Mángano
Affiliation:
Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, SK S7N 5E2, Canada,

Abstract

An early Cambrian ichnofauna consisting of Helminthoidichnites tenuis, Helminthopsis tenuis, Multina isp., Oldhamia alata, and Pilichnus cf. dichotomus is documented from shallow-marine deposits ranging from the upper offshore to the offshore transition in the Puncoviscana Formation of northwest Argentina. Although the ichnogenus Oldhamia is more common in Cambrian deep-marine environments, this occurrence provides further evidence that it is also present in shallow-marine environments. The burrow network Multina (senior synonym of Olenichnus) is preserved at the base of tempestites, representing the activity of post-storm colonizers. A drowning surface separating offshore-transition deposits below from upper-offshore deposits above contains widespread evidence of trace fossils in direct association with matgrounds. The undermat miners Oldhamia alata and Pilichnus cf. P. dichotomus occur on this surface, revealing exploitation of organic matter in the biomat. Low sediment rate during drowning and paucity of bioturbation by sediment bulldozers may have promoted the establishment of the matground. In comparison with the simpler animal-matground interactions characteristic of the Ediacaran, the combination of Cambrian evolutionary innovations and the presence of microbial mats promoted more sophisticated interactions. Complex feeding trace fossils revealing that systematic undermat mining, as displayed by Oldamia alata and Pilichnus cf. dichotomus, is a product of the Cambrian explosion.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aceñolaza, F. G. and Durand, F. R. 1973. Trazas fósiles del basamento cristalino del noroeste argentino. Boletín de la Asociación Geológica de Córdoba, 2:4555.Google Scholar
Aceñolaza, F. G. and Toselli, A. J. 1981. Geología del noroeste argentino. Publicación Especial Facultad de Ciencias Naturales de la Universidad Nacional de Tucumán, 1287:1212.Google Scholar
Aceñolaza, F. G., Aceñolaza, G. F., and Esteban, S. 1999. Bioestratigrafía de la Formación Puncoviscana y unidades equivalentes en el NOA. InGonzález Bonorino, G., Omarini, R., and Viramonte, J.(eds.), Relatorio XIV Congreso Geológico Argentino. Geología del Noroeste Argentino, 1:91114.Google Scholar
Aceñolaza, G. F. 2003. The Cambrian System in Northwestern Argentina: Stratigraphical and palaeontological framework. Geologica Acta, 1:2339.Google Scholar
Banerjee, S. and Jeevankumar, S. 2005. Microbially originated wrinkle structures on sandstone and their stratigraphic context: Palaeoproterozoic Koldaha Shale, central India. Sedimentary Geology, 176:211224.Google Scholar
Becchio, R., Lucassen, F., Franz, G., Viramonte, J., and Wemmer, K. 1999. El basamento paleozoico inferior del noroeste de Argentina (S 23°–27°) — Metamorfismo y geocronología. InGonzález Bonorino, G., Omarini, R. and Viramonte, J.(eds.), Relatorio XIV Congreso Geológico Argentino. Geología del Noroeste Argentino, 1:5872.Google Scholar
Bouougri, E. H. and Porada, H. 2007. Siliciclastic biolaminites indicative of widespread microbial mats in the Neoproterozoic Nama Group of Namibia. Journal of African Earth Sciences, 48:3848.Google Scholar
Buatois, L. A. and Mángano, M. G. 2002. Ichnology of the Puncoviscana Formation in northwest Argentina: Anactualistic ecosystems and the Precambrian–Cambrian transition. First International Palaeontological Congress, Abstracts, Sydney, 25, 26 p.Google Scholar
Buatois, L. A. and Mángano, M. G. 2003a. Early colonization of the deep sea: Ichnologic evidence of deep-marine benthic ecology from the early Cambrian of northwest Argentina. Palaios, 18:572581.Google Scholar
Buatois, L. A. and Mángano, M. G. 2003b. La icnofauna de la Formación Puncoviscana en el noroeste argentino: Implicancias en la colonización de fondos oceánicos y reconstrucción de paleoambientes y paleoecosistemas de la transición precámbrica–cámbrica. Ameghiniana, 40:103117.Google Scholar
Buatois, L. A. and Mángano, M. G. 2004. Terminal Proterozoic–Early Cambrian ecosystems: Ichnology of the Puncoviscana Formation, Northwest Argentina. InWebby, B. D., Mángano, M. G. and Buatois, L. A.(eds.), Trace Fossils in Evolutionary Palaeoecology, Fossils & Strata, 51:116.Google Scholar
Buatois, L. A. and Mángano, M. G. 2005. “The Cambrian System in Northwestern Argentina: Stratigraphical and palaeontological framework” by G. F. Aceñolaza. Discussion. Geologica Acta, 3:6572.Google Scholar
Buatois, L. A. and Mángano, M. G. In press. The trace-fossil record of organism-matground interactions in space and time. InNoffke, N. and Chafetz, H.(eds.), Microbial Mats and the Fossil Record of Siliciclastic Environments. SEPM Special Publication.Google Scholar
Buatois, L. A., Mángano, M. G., Wu, X., and Zhang, G. 1995. Vagorichnus, a new ichnogenus for feeding burrow systems and its occurrence as discrete and compound ichnotaxa in Jurassic lacustrine turbidites of Central China. Ichnos, 3:265272.Google Scholar
Buatois, L. A., Mángano, M. G., Maples, C. G., and Lanier, W. P. 1998. Ichnology of an upper Carboniferous fluvio-estuarine paleovalley: The Tonganoxie Sandstone, Buildex Quarry, eastern Kansas. Journal of Paleontology, 71:152180.Google Scholar
Buatois, L. A., Mángano, M. G., Brussa, E., Benedetto, J. L., and Pompei, J. 2009. The changing face of the deep: Colonization of the Early Ordovician deep-sea floor, Puna, northwest Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology, 280:291299.CrossRefGoogle Scholar
Catuneanu, O. 2007. Sequence stratigraphic framework of microbial mat features, p. 276283. InSchieber, J., Bose, P. K., Eriksson, P. G., Banerjee, S., Sarkar, S., Altermann, W., and Catuneanu, O.(eds.), Atlas of microbial mat features preserved within the siliciclastic rock record. Atlases in Geology 2. Elsevier, Amsterdam.Google Scholar
Cheel, R. J. and Leckie, D. A. 1993. Hummocky cross-stratification. Sedimentology Review, 1:103122.Google Scholar
Do Campo, M. and Guevara, S. R. 2005. Provenance analysis and tectonic setting of late Neoproterozoic metasedimentary successions in NW Argentina. Journal of South American Earth Sciences, 19:143153.Google Scholar
Do Campo, M. and Nieto, F. 2003. Transmission electron microscopy study of very low-grade metamorphic evolution in Neoproterozoic pelites of the Puncoviscana Formation (Cordillera Oriental, NW Argentina). Clay Minerals, 38:459481.Google Scholar
Dott, R. H. Jr. and Bourgeois, J. 1982. Hummocky stratification: Significance of his variable bedding sequences. Geological Society of America Bulletin, 93 663680.Google Scholar
Dumas, S. and Arnott, R. W. C. 2006. Origin of hummocky and swaley cross-stratification— The controlling influence of unidirectional current strength and aggradation rate. Geology, 34:10731076.Google Scholar
Escayola, M. P., Van Staal, C. R., and Davis, W. J. 2011. The age and tectonic setting of the Puncoviscana Formation in northwestern Argentina: An accretionary complex related to early Cambrian closure of the Puncoviscana Ocean and accretion of the Arequipa-Antofalla block. Journal of South American Earth Sciences.Google Scholar
Fedonkin, M. A. 1985. Paleoichnology of Vendian Metazoa, p. 112116. InSokolov, B. S. and Ivanovskiy, A. B.(eds.), The Vendian System 1: Historic-Geological and Palaeontological Basis. Nauka, Moscow.Google Scholar
Fedonkin, M. A. 2003. Origin of the Metazoa in the light of Proterozoic fossil records. Paleontological Research, 7:941.Google Scholar
Fedonkin, M. A., Simonetta, A., and Ivantsov, A. Y. 2007, New data on Kimberella, the Vendian mollusc-like organism (White Sea region, Russia): Palaeoecological and evolutionary implications. InVickers-Rich, P. and Komarower, P.(eds.), The rise and fall of the Ediacaran Biota. Geological Society of London Special Publication, 286:157179.Google Scholar
Fitch, A. 1850. A historical, topographical and agricultural survey of the County of Washington, Pt. 2–5. Transactions of the New York Agricultural Society, 9:753944.Google Scholar
Forbes, E. 1849. On Oldhamia, a new genus of Silurian fossils. Journal of the Geological Society of Dublin, 4:20.Google Scholar
Gehling, J. G., Droser, M., Jensen, S., and Runnegar, B. 2005. Ediacaran organisms: Relating form to function, p. 4366. InBriggs, D. E. G.(ed.), Evolving Form and Function: Fossils and Development: A Special Publication of the Peabody Museum of Natural History, Yale University.Google Scholar
Geinitz, H. B. 1867. Die organischen Ueberreste im Dachschiefer von Wurzbach bei Lobenstein. Nova Acta Academiae Caesareae Leopoldino-Carolinae Germanicae Naturae Curiosorum, 33:124.Google Scholar
Goldring, R. and Jensen, S. 1996. Trace fossils and biofabrics at the Precambrian–Cambrian boundary interval in western Mongolia. Geological Magazine, 133:403415.Google Scholar
Heer, O. 1877. Flora fossilis Helvetiae. Die vorweltliche flora der Schweiz. J. Wurster & Co., Zurich, 182 p.Google Scholar
Herbosch, A. and Verniers, J. 2011. What is the biostratigraphic value of the ichnofossil Oldhamia for the Cambrian: a review. Geologica Belgica, 14:229248.Google Scholar
Hertweck, G. H., Wehrmann, A., and Liebezeit, G. 2007. Bioturbation structures of polychaetes in modern shallow marine environments and their analogues to Chondrites group traces. Palaeogeography, Palaeoclimatology, Palaeoecology, 245:382389.Google Scholar
Hitchcock, E. 1858. Ichnology of New England. A report on the sandstone of the Connecticut valley, especially its fossil footprints. W. White, Boston, 220 p.Google Scholar
Hofmann, H. J., Cecile, M. P., and Lane, L. S. 1994. New occurrences of Oldhamia and other trace fossils in the Cambrian of the Yukon and Ellesmere Island, arctic Canada. Canadian Journal of Earth Sciences, 31:767782.Google Scholar
Hongn, F. D. 1996. La estructura pre-Grupo Mesón (Cámbrico) del basamento del Valle de Lerma, Provincia de Salta. 13° Congreso Geológico Argentino & 3° Congreso de Exploración de Hidrocarburos, Actas, 2:137145.Google Scholar
Hongn, F. D., Tubia, J. M., Aranguren, A., Vegas, N., Mon, R., and Dunning, G. R. 2010. Magmatism coeval with lower Paleozoic shelf basins in NW-Argentina (Tastil batholith): Constrains on current stratigraphic and tectonic interpretations. Journal of South American Earth Sciences, 29:289305.Google Scholar
Ivantsov, A. Y. and Malakhovskaya, Y. E. 2002. Giant traces of Vendian animals. Doklady Earth Sciences A, 385:618622.Google Scholar
Jensen, S. 1997. Trace fossils from the lower Cambrian Mickwitzia sandstone, south-central Sweden. Fossils and Strata, 42:1111.Google Scholar
Jensen, S. and Runnegar, B. N. 2005. A complex trace fossil from the Spitskop Member (terminal Ediacaran–?Lower Cambrian) of southern Namibia. Geological Magazine, 142:561569.Google Scholar
Jensen, S., Droser, M. L., and Gehling, J. G. 2006. A critical look at the Ediacaran trace fossil record. InKaufman, J. and Xiao, S.(eds.), Neoproterozoic Geobiology and Paleobiology Topics in Geobiology, 27:115157.Google Scholar
Ježek, P. 1990. Análisis sedimentológico de la Formación Puncoviscana entre Tucumán y Salta. InAceñolaza, F. G., Miller, H., and Toselli, A. J.(eds.), El Ciclo Pampeano en el Noreste Argentino. Serie Correlación Geológica, 4:936.Google Scholar
Kowalski, W. R. 1987. Trace fossils of the upper Vendian and lowermost Cambrian in Southern Poland. Bulletin of the Polish Academy of Sciences, Earth Sciences, 35:2132.Google Scholar
Książkiewicz, M. 1958. Stratigrafia serii magurskiej w Beskidzie Średnim. Państwowy Instytut Geologiczny, Biulletyn, 153:4396.Google Scholar
Książkiewicz, M. 1968. O niektórych problematykach z fliszu Karpat Polskich (Część III). Rocznik Polskiego Towarzystwa Geologicznego W. Krakowie, 38:317.Google Scholar
Książkiewicz, M. 1977. Trace fossils in the flysch of the Polish Carpathians. Paleontologica Polonica, 36:1200.Google Scholar
Lindholm, R. M. and Casey, J. F. 1990. The distribution and possible biostratigraphic significance of the ichnogenus Oldhamia in the shales of the Blow Me Down Brook Formation, western Newfoundland. Canadian Journal of Earth Sciences, 27:12701287.CrossRefGoogle Scholar
Lopez De Azarevich, V. L., Omarini, R. H., Sureda, R. J., and Azarevich, M. B. 2010. Ritmitas mareales en la Formación Puncoviscana (s.l.) en la localidad de Rancagua, noroeste argentino: Dinámica mareal y consideraciones paleoastronómicas. Revista de la Asociación Geológica Argentina, 66:104118.Google Scholar
Macnaughton, R. B., Narbonne, G. M., and Dalrymple, R. W. 2000. Neoproterozoic slope deposits, Mackenzie Mountains, northwestern Canada: Implications for passive-margin development and Ediacaran faunal ecology. Canadian Journal of Earth Sciences, 37:9971020.Google Scholar
Mángano, M. G. 2011. Oxygen- and substrate-controlled trace-fossil assemblages in a Burgess Shale-type deposit from the Stephen Formation at Stanley Glacier, Canadian Rocky Mountains: Unraveling ecologic and evolutionary controls. InJohnston, P. A. and Johnston, K. J.(eds.), Proceedings of the International Conference on the Cambrian Explosion. Palaeontographica Canadiana, 31.Google Scholar
Mángano, M. G. and Buatois, L. A. 2004. Integración de estratigrafía secuencial, sedimentología e icnología para un análisis cronoestratigráfico del Paleozoico inferior del noroeste argentino. Revista de la Asociación Geológica Argentina, 59:273280.Google Scholar
Meneghini, G. G. A. 1850. Paleodictyon. InSavi, P. and Meneghini, G., Observazione stratigrafiche e paleontologiche concernati la geologie della Toscana e dei paesi limitrofi (Appendix to R.R. Murchison, Memoria sulla struttura geologie delle Alpi). Stamperia granducale, Firenze, p. 246.Google Scholar
Mikuláš, R. 2003. Trace fossils and bioturbation in the lower part of the Sarka Formation at Praha-Carveny vrch Hill (Ordovician, Barrandian area, Czech Republic). Bulletin of Geosciences, 78:141146.Google Scholar
Mikuláš, R., Lehotský, T., and Bábek, O. 2004. Trace fossils of the Moravice Formation from the southern Nízký Jeseník Mts. (Lower Carboniferous, Culm facies; Moravia, Czech Republic). Bulletin of Geosciences, 79:8198.Google Scholar
Mirré, J. C. and Aceñolaza, F. G. 1972. El hallazgo de Oldhamia sp. (traza fósil) y su valor como evidencia de edad cámbrica para el supuesto Precámbrico del borde occidental del Aconquija, Prov. de Catamarca. Ameghiniana, 9:7278.Google Scholar
Mon, R. and Hongn, F. 1988. Caracterización estructural de la Formación Puncoviscana dentro del basamento del Norte Argentino. Revista de la Asociación Geológica Argentina, 43:124127.Google Scholar
Mon, R. and Hongn, F. 1991. The structure of the Precambrian and lower Paleozoic Basement of the Central Andes between S 22° and 32°. Lat. Geologische Rundschau, 83:745758.Google Scholar
Moya, M. C. 1998. El Paleozoico inferior en la sierra de Mojotoro, Salta-Jujuy. Revista de la Asociación Geológica Argentina, 53:219238.Google Scholar
Myrow, P. 1992. Bypass-zone tempestite facies model and proximality trends for an ancient muddy shoreline and shelf. Journal of Sedimentary Research, 62:99115.Google Scholar
Noffke, N. 2010. Geobiology: Microbial Mats in Sandy Deposits from the Archaean Era to Today. Springer-Verlag, Berlin Heidelberg.Google Scholar
Omarini, R. H. and Baldis, B. A. J. 1984. Sedimentología y mecanismos depositacionales de la Formación Puncoviscana (Grupo Lerma, Precámbrico–Cámbrico) del noroeste argentino. Actas Noveno Congreso Geológico Argentino, 1:384398.Google Scholar
Orłowski, S. 1968. Cambrian of Łysogóri Anticline in the Holy Cross Mountains. Biuletyn Instytutu Geologicznego, 10:195221. (In Polish)Google Scholar
Orłowski, S. and Żylińska, A. 1996. Non-arthropod burrows from the middle and upper Cambrian of the Holy Cross Mountains, Poland. Acta Palaeontologica Polonica, 41:385409.Google Scholar
Pfeiffer, H. 1968. Die Spurenfossilien des Kulms (Dinants) und Devons der Frankenwälder Querzone (Thüringen). Jahrbuch der Geologie, 2:651717.Google Scholar
Ramos, V. R. 2000. The Southern Central Andes, p. 561604. InCordani, U. G., Milani, E. J., Thomaz Filho, A., and Campos, D. A., Tectonic Evolution of South America. 31st International Geological Congress, Rio de Janeiro.Google Scholar
Ramos, V. R. 2008. The Basement of the Central Andes: The Arequipa and Related Terranes. Annual Review Earth and Planetary Sciences, 36:289324.Google Scholar
Richter, R. 1850. Aus der thüringschen Grauwacke. Deustsche Geologische Gesellschaft, Zeitschrift, 2:198206.Google Scholar
Rodriguez-Tovar, F. J., Uchman, A., Payros, A., Orue-Etxebarria, X., Apellaniz, E., and Molina, E. 2010. Sea-level dynamics and palaeoecological factors affecting trace fossil distribution in Eocene turbiditic deposits (Gorrondatxe section, N Spain). Palaeogeography, Palaeoclimatology, Palaeoecology, 285:5065.Google Scholar
Sarkar, S., Banerjeeb, T. S., Eriksson, P. G., and Catuneanu, O. 2005. Microbial mat control on siliciclastic Precambrian sequence stratigraphic architecture: Examples from India. Sedimentary Geology, 176:195209.Google Scholar
Schlirf, M., Uchman, A., and Kümmel, M. 2001. Upper Triassic (Keuper) non-marine trace fossils from the Haßberge area (Franconia, south-eastern Germany). Paläontologische Zeitschrift, 75:7196.Google Scholar
Seilacher, A. 1977. Pattern analysis of Paleodictyon and related trace fossils. InCrimes, T. P. and Harper, J. C.(eds.), Trace Fossils 2. Geological Journal Special Issue, 9:289334. Seel House Press, Liverpool.Google Scholar
Seilacher, A. 1999. Biomat-related lifestyles in the Precambrian. Palaios, 14:8693.Google Scholar
Seilacher, A. and Hagadorn, J. W. 2010. Early molluscan evolution: Evidence from the trace fossil record. Palaios, 25:565575.Google Scholar
Seilacher, A., Buatois, L. A., and Mangano, M. G. 2005. Trace fossils in the Ediacaran–Cambrian transition: Behavioural diversification, ecological turnover and environmental shift. Palaeogeography, Palaeoclimatology, Palaeoecology, 227:323356.Google Scholar
Sperling, E. A. and Vinther, J. 2010. A placozoan affinity for Dickinsonia and the evolution of late Proterozoic metazoan feeding modes. Evolutiom and Development, 12:201209.Google Scholar
Tacker, C. R., Martin, A., Weaver, P. G., and Lawver, D. R. 2010. Trace fossils versus body fossils: Oldhamia recta revisited. Precambrian Research, 178:4350.Google Scholar
Turner, J. C. M. 1960. Estratigrafía de la Sierra de Santa Victoria y adyacencias. Boletín de la Academia Nacional de Ciencias de Córdoba, 41:163196.Google Scholar
Turner, J. C. M. 1972. Puna, p. 91116. InLeanza, A, A.(ed.), I Simposio de Geología Regional Argentina. Academia Nacional de Ciencias, Córdoba.Google Scholar
Uchman, A. 1998. Taxonomy and ethology of flysch trace fossils; revision of the Marian Ksiazkiewicz Collection and studies of complementary material. Annales Societatis Geologorum Poloniae, 68:105218.Google Scholar
Uchman, A. 1999. Ichnology of the Rhenodanubian Flysch (Lower Cretaceous–Eocene) in Austria and Germany. Beringeria, 25:67173.Google Scholar
Uchman, A. 2001. Eocene flysch trace fossils from the Hecho Group of the Pyrenees, northern Spain. Beringeria, 28:341.Google Scholar
Uchman, A. and Álvaro, J. J. 2000. Non-marine invertebrate trace fossils from the Tertiary Calatayud-Teruel Basin, NE Spain. Revista Española de Paleontología, 15:203218.Google Scholar
Uchman, A. and Tchoumatchenko, P. 2003. A mixed assemblage of deep-sea and shelf trace fossils from the Lower Cretaceous (Valanginian) Kamchia formation in the Troyan region, Central Fore-Balkan, Bulgaria. Annales Societatis Poloniae, 73:2734.Google Scholar
Uchman, A., Nemec, W., Ilgar, A., and Messina, C. 2007. Lacustrine trace fossils and environmental conditions in the early Miocene Ermenek Basin, southern Turkey. Annales Societatis Geologorum Poloniae, 77:123139.Google Scholar
Van Staden, A. and Zimmermann, U. 2003. Tillites or ordinary conglomerates? Provenance studies on diamictites of the Neoproterozoic Puncoviscana in NW Argentina. Abstracts 3rd Latinoamerican Congress of Sedimentology, p. 7475.Google Scholar
Zhang, X. G., Bergström, J., Bromley, R. G., and Hou, X. G. 2007. Diminutive trace fossils in the Chengjiang Lagerstätte. Terra Nova, 19:407412.Google Scholar