Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-13T00:02:36.531Z Has data issue: false hasContentIssue false

Adaptive function and phylogenetic significance of novel skeletal features of a new Devonian microconchid tubeworm (Tentaculita) from Wyoming, USA

Published online by Cambridge University Press:  13 August 2021

Michał Zatoń*
Affiliation:
Institute of Earth Sciences, University of Silesia in Katowice, Będzińska 60, 41-200 Sosnowiec, Poland
Mingxi Hu
Affiliation:
Department of Geology, Colorado College, Colorado Springs, Colorado 80903, USA
Mercedes di Pasquo
Affiliation:
Laboratory of Palynostratigraphy and Paleobotany, Centro de Investigación Científica y de Transferencia de Tecnología a la Producción (CONICET-ER-UADER), Diamante CP [E3105BWA], Entre Ríos, Argentina
Paul M. Myrow
Affiliation:
Department of Geology, Colorado College, Colorado Springs, Colorado 80903, USA
*
*Corresponding author

Abstract

A new genus and species of microconchid tubeworm, Aculeiconchus sandbergi n. gen. n. sp., is described from the Givetian (Devonian) Maywood Formation of Cottonwood Canyon, Wyoming, USA. It possesses unique hollow spines of various lengths on the tube underside, a position previously undocumented for these fossils. Like some cyclostome bryozoans possessing basal tubular extensions, the basal spines of Aculeiconchus n. gen. were presumably also used for fixation to flexible substrata, e.g., algal thalli, which is a previously undocumented adaptive strategy in microconchids. Together with other skeletal features, such basal spines could suggest that ‘lophophorate’ microconchids, unlike the other tentaculitoids, might be phylogenetically not as distant from bryozoans as previously thought. The Maywood Formation, which contains a few-millimeters thick, monospecific shell accumulation of the microconchids described herein, records deposition in an estuarine brackish setting within narrow channels that were cut into underlying strata. The microconchids were opportunistic taxa that repeatedly colonized these salinity-stressed estuarine channels, leading to a series of adaptive innovations, including colonization of plant stems during the Early Devonian (Beartooth Butte Formation) and possibly flexible, soft-algal substrata during the Middle Devonian (Maywood Formation, this study). Tectonic quiescence during the Early and Middle Devonian indicates that erosion and subsequent deposition of the Maywood and the underlying Beartooth Butte Formation channels were responses to major eustatic events. Over a span of nearly 30 Myr, channels were cut successively during lowstand conditions and a distinctive faunal assemblage with microconchids tracked marine transgressions into the channels.

UUID: http://zoobank.org/394c8b32-d5e7-411e-8e56-6fb9f55bbb8a

Type
Articles
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, K.C., 1965, Lower to Middle Devonian spores of North and Central Vestspitsbergen: Palaeontology, v. 8, p. 687748.Google Scholar
Alvarez, F., and Brunton, C.H.C., 2001, Fundamental differences in external spine growth in brachiopods, in Brunton, H., Cocks, L.R.M., and Long, S.L., eds., Brachiopods: Past and Present: Systematics Association Special v. 64, p. 108118.Google Scholar
Apolinarska, K., Pełechaty, M., and Pukacz, A., 2011, CaCO3 sedimentation by modern charophytes (Characeae): Can calcified remains and carbonate δ13C and δ18O record the ecological state of lakes?—A review: Studia Limnologica et Telmatologica, v. 5, p. 5566.Google Scholar
Avkhimovitch, V.I., Tchibrikova, E.V., Obukhovskaya, T.G., Nazarenko, A.M., Umnova, V.T., Raskatova, L.G., Mantsurova, V.N., Loboziak, S., and Streel, M., 1993, Middle and Upper Devonian miospore zonation of eastern Europe: Bulletin des Centres de Recherches Exploration-Production Elf Aquitaine, v. 17, p. 79147.Google Scholar
Balme, B.E., 1962, Upper Devonian (Frasnian) spores from the Carnarvon Basin, Western Australia: The Palaeobotanist, v. 9, p. 110.Google Scholar
Bełka, Z., and Skompski, S., 1982, A new open-coiled gastropod from the Viséan of Poland: Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, v. 7, p. 389398.10.1127/njgpm/1982/1982/389CrossRefGoogle Scholar
Bennett, C., 2008, A review of the Carboniferous colonisation of non-marine environments by ostracods: Senckenbergiana Lethaea, v. 88, p. 3746.10.1007/BF03043976CrossRefGoogle Scholar
Beus, S.S., 1980, Devonian serpulid bioherms in Arizona: Journal of Paleontology, v. 54, p. 11251128.Google Scholar
Boardman, R.S., 1983, General features of the class Stenolaemata, in Moore, R.C., ed., Treatise on Invertebrate Paleontology, Part G(1), Bryozoa (revised): Boulder and Lawrence, Geological Society of America (and University of Kansas Press), p. G49G137.Google Scholar
Borg, F., 1926, Studies on Recent cyclostomatous Bryozoa: Zoologiska Bidrag från Uppsala, v. 10, p. 181507.Google Scholar
Bouček, B., 1964, The Tentaculites of Bohemia: Prague, Czechoslovakian Academy of Sciences, 125 p.Google Scholar
Brayard, A., Vennin, E., Olivier, N., Bylund, K.G., Jenks, J., Stephen, D.A., Bucher, H., Hofmann, R., Goudemand, N., and Escarguel, G., 2011, Transient metazoan reefs in the aftermath of the end-Permian mass extinction: Nature Geoscience, v. 4, p. 693697, https://doi.org/10.1038/ngeo1264.CrossRefGoogle Scholar
Breuer, P., and Steemans, P., 2013, Devonian spore assemblages from northwestern Gondwana: Taxonomy and biostratigraphy: Special Papers in Palaeontology, v. 89, p. 5163.Google Scholar
Brower, J.C., 1975, Silurian crinoids from the Pentland Hills, Scotland: Palaeontology, v. 18, p. 631656.Google Scholar
Brunton, C.H.C., 1976, Micro-ornamentation of some spiriferide brachiopods: Palaeontology, v. 19, p. 767771.Google Scholar
Brunton, C.H.C., 1982, The functional morphology and palaeoecology of the Dinantian brachiopod Levitusia: Lethaia, v. 15, p. 149167.CrossRefGoogle Scholar
Burchette, T.P., and Riding, R., 1977, Attached vermiform gastropods in Carboniferous marginal marine stromatolites and biostromes: Lethaia, v. 10, p. 1728.10.1111/j.1502-3931.1977.tb00586.xCrossRefGoogle Scholar
Caruso, J.A., and Tomescu, A.M.F., 2012, Microconchid encrusters colonizing land plants: The earliest North American record from the Early Devonian of Wyoming, USA: Lethaia, v. 45, p. 490494, https://doi.org/10.1111/j.1502-3931.2012.00305.x.CrossRefGoogle Scholar
Cohen, K.M., Harper, D.A.T., and Gibbard, P.L., 2020, ICS International Chronostratigraphic Chart 2020/03: International Commission on Stratigraphy, IUGS, https://stratigraphy.org/ICSchart/ChronostratChart2020-03.pdf (accessed January 2021).Google Scholar
Daudin, F.M., 1800, Recueil de mémoires et de notes sur les espèces inédites ou peu connues de mollusques, de vers et de zoophytes: Paris, Fuchs [et] Treuttel et Wurtz, 50 pp.Google Scholar
Dehler, C.M., 1995, Paleo-environmental and stratigraphic analysis of Lower Devonian Beartooth Butte Formation and associated strata, central-eastern Idaho [M.Sc. thesis]: Flagstaff, Northern Arizona University, 157 p.Google Scholar
Di Pasquo, M.M., and Silvestri, L., 2014, Las colecciones de palinología y paleobotánica del Laboratorio de Palinoestratigrafía y Paleobotánica del Centro de Investigaciones Científicas y Transferencia de Tecnología a la Producción (CICYTTP), Entre Ríos, Argentina: Contribuição à RESCEPP ‘Rede Sul-americana de Coleções e Ensino em Paleobotânica e Palinologia’: Boletín de la Asociación Latinoamericana de Paleobotánica y Palinología, v. 14, p. 3947.Google Scholar
Di Pasquo, M., Amenábar, C.R., and Noetinger, S., 2009, Middle Devonian microfloras and megafloras from western Argentina and southern Bolivia: Their importance in the palaeobiogeographical and palaeoclimatic evolution of western Gondwana: Geological Society London, Special Publication, v. 314, p. 193213, https://doi.org/10.1144/SP314.11.CrossRefGoogle Scholar
Dorf, E., 1934, Stratigraphy and paleontology of a new Devonian formation at Beartooth Butte, Wyoming: The Journal of Geology, v. 42, p. 720737.10.1086/624237CrossRefGoogle Scholar
Dorobek, S.L., Reid, S.K., and Elrick, M., 1991, Antler foreland stratigraphy of Montana and Idaho: The stratigraphic record of eustatic fluctuations and episodic tectonic events, in Cooper, J.D., and Stevens, C.H., eds., Paleozoic Paleogeography of the Western United States, Volume 2: Pacific Section, Society for Sedimentary Geology (SEPM), Book 67, p. 487507.Google Scholar
Dreesen, R., and Jux, U., 1995, Microconchid buildups from the late Famennian peritidal-lagoonal settings (Evieux Formation, Ourthe Valley, Belgium): Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, v. 198, p. 107121.10.1127/njgpa/198/1995/107CrossRefGoogle Scholar
Elliot, D.K., and Ilyes, R.R., 1996, Lower Devonian vertebrate biostratigraphy of the western United States: Modern Geology, v. 20, p. 253262.Google Scholar
Elliot, D.K., and Johnson, H.G., 1997, Use of vertebrates to solve biostratigraphic problems: Examples from the Lower and Middle Devonian of western North America, in Klapper, G., Murphy, M.A., and Talent, J.A., eds., Paleozoic Sequence Stratigraphy, Biostratigraphy, and Biogeography: Studies in Honor of J. Granville (“Jess”): Geological Society of America Special Paper, v. 321, p. 179188.Google Scholar
Filipiak, P., and Zatoń, M., 2016, Non-calcified macroalgae from the lower Famennian (Upper Devonian) of the Holy Cross Mountains, Poland: Geobios, v. 49, p. 191200, https://doi.org/10.1016/j.geobios.2016.01.019.CrossRefGoogle Scholar
Florjan, S., Pacyna, G., and Borzęcki, R., 2012, [First find of microconchids (Tentaculita) on upper Carboniferous seed fern Karinopteris daviesii from Nowa Ruda (Lower Silesia, Poland)]: Przegląd Geologiczny, v. 60, p. 273275.Google Scholar
Fraiser, M.L., 2011, Paleoecology of secondary tierers from western Pangean tropical marine environments during the aftermath of the end-Permian mass extinction: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 308, p. 181189, https://doi.org/10.1016/j.palaeo.2010.12.002.CrossRefGoogle Scholar
Gierlowski-Kordesch, E.H., and Cassle, C.F., 2015, The ‘Spirorbis‘ problem revisited: Sedimentology and biology of microconchids in marine-nonmarine transitions: Earth-Science Reviews, v. 148, p. 209227, https://doi.org/10.1016/j.earscirev.2015.04.010.CrossRefGoogle Scholar
Goeppert, H.R., 1852, Fossile Flora des Übergangsgebirges: Nova Acta Leopoldina, v. 22, p. 1299.Google Scholar
Grader, G.W., and Dehler, C., 1999, Devonian stratigraphy in east-central Idaho: New perspectives from the Lemhi Range and Bayhorse area, in Hughes, S.S., and Thackray, G.D., eds., Guide-book to the Geology of Eastern Idaho: Pocatello, Idaho, Idaho Museum of Natural History, p. 3156.Google Scholar
Hall, J., 1861, Contribution to Palaeontology, Continuation of Appendix C: Descriptions of New Species of Fossils from the Upper Helderberg, Hamilton and Chemung Groups, Continued from Page 109 of the Fourteenth Annual Report of the Regents of the University Upon the State Cabinet: Albany, New York, Charles Van Benthuysen, 109 p.Google Scholar
He, L., Wang, Y., Woods, A., Li, G., Yang, H., and Liao, W., 2012, Calcareous tubeworms as disaster forms after the end-Permian mass extinction in South China: Palaios, v. 27, p. 878886, https://doi.org/10.2110/palo.2012.p12-022r.CrossRefGoogle Scholar
Howell, B.F., 1964, A new serpulid worm, Spirorbis kentuckiensis, from the Chester Group of Kentucky: Journal of Paleontology, v. 38, p. 170171.Google Scholar
Ilyes, R.R., 1995, Acanthodian scales and worm tubes from the Kapp Kjeldsen Division of the Lower Devonian Wood Bay Formation Spitsbergen: Polar Research, v. 14, p. 8992.CrossRefGoogle Scholar
Johnson, J.G., and Pendergast, A., 1981, Timing and mode of emplacement of the Roberts Mountains allochthon, Antler orogeny: Geological Society of America Bulletin, v. 92, p. 648658.2.0.CO;2>CrossRefGoogle Scholar
Johnson, J.G., and Sandberg, C.A., 1988, Devonian eustatic events in the western United States and their biostratigraphic responses, in McMillan, N.J., and Glass, D.J., eds., Devonian of the World, Proceedings of the 2nd International Symposium on the Devonian System, Volume 3, Paleontology, Paleoecology, and Biostratigraphy: Calgary, Alberta, Canadian Society of Petroleum Geologists, Memoir 14, p. 171178.Google Scholar
Johnson, J.G., and Sandberg, C.A., 1989, Devonian eustatic events in the western United States and their biostratigraphic responses, in McMillan, N.J., Embry, A.F., and Glass, D.J., eds., Devonian of the World: Canadian Society of Petroleum Geologists Memoir, v. 14, p. 171179.Google Scholar
Johnson, J.G., Klapper, G., and Sandberg, C.A., 1985, Devonian eustatic fluctuations in Euramerica: Geological Society of America Bulletin, v. 96, p. 567587.2.0.CO;2>CrossRefGoogle Scholar
Kauffman, M.E., and Earll, F.N., 1963, Geology of the Garnet-Bearmouth area, western Montana: Montana Bureau of Mines and Geology Memoir, v. 39, 40 p.Google Scholar
Kaźmierczak, J., 1967, Morphology and palaeoecology of the productid Horridonia horrida (Sowerby) from Zechstein of Poland: Acta Palaeontologica Polonica, v. 12, p. 239260.Google Scholar
Ketner, K., 2012, An alternative hypothesis for the mid-Paleozoic Antler orogeny in Nevada: U.S. Geological Survey Professional Paper, v. 1790, p. 111, https://doi.org/10.3133/pp1790.Google Scholar
King, R.H., 1938, New Chonetidae and Productidae from Pennsylvanian and Permian strata of north central Texas: Journal of Paleontology, v. 12, p. 257279.Google Scholar
Linnaeus, C., 1758, Systema Naturae per Regna Tria Naturae (tenth edition), Volume 1, Regnum Animale: Stockholm, Laurentii Salvii, 824 p.Google Scholar
LoDuca, S., Melchin, M.J., and Verbruggen, H., 2011, Complex noncalcified macroalgae from the Silurian of Cornwallis Island, Arctic Canada: Journal of Paleontology, v. 85, p. 111–121, https://doi.org/10.1666/10-025.1.CrossRefGoogle Scholar
Macke, D.L., 1993, Cambrian through Mississippian rocks of the Powder River Basin, Wyoming, Montana, and adjacent areas, in Stoeser, J., ed., Evolution of Sedimentary Basins-Powder River Basin: U.S. Geological Survey Bulletin, v. 1917-M, p. 1174.Google Scholar
Malone, D., Welch, J., Foreman, B., and Craddock, J., 2017, Detrital zircon U-Pb geochronology and provenance of the Eocene Willwood Formation, northern Absaroka Basin, Wyoming: Mountain Geologist, v. 54, p. 104124.10.31582/rmag.mg.54.2.104CrossRefGoogle Scholar
Mastalerz, K., 1996, [‘Spirorbis‘ from lacustrine deposits of the coal-bearing Carboniferous of the Intra Sudetic Depression (SW Poland)]: Przegląd Geologiczny, v. 44, p. 164167.Google Scholar
Melo, J.H.G., and Loboziak, S., 2003, Devonian–early Carboniferous miospore biostratigraphy of the Amazon Basin, northern Brazil: Review of Palaeobotany & Palynology, v. 124, p. 131202, https://doi.org/10.1016/S0034-6667(02)00184-7.CrossRefGoogle Scholar
Mills, B., and Leighton, L.R., 2008, Functional morphology of chonetidine (Brachiopoda) spines: Biomechanical tests of a potential key innovation: Historical Biology, v. 20, p. 213–221, https://doi.org/10.1080/08912960802583174.Google Scholar
Nicholson, H.A., 1876, The Ancient Life-History of the Earth: A Comprehensive Outline of the Principles and Leading Facts of Paleontological Science: Akron, Ohio, Werner, 428 p.Google Scholar
Noetinger, S., and di Pasquo, M., 2011, Devonian palynological assemblages from the San Antonio x-1 borehole, Tarija Basin, northwestern Argentina: Geologica Acta, v. 9, p. 199216, https://doi.org/10.1344/105.000001693.Google Scholar
Noetinger, S., di Pasquo, M., and Starck, D., 2018, Middle-Upper Devonian palynofloras from Argentina, systematic and correlation: Review of Palaeobotany and Palynology, v. 257, p. 95116, https://doi.org/10.1016/j.revpalbo.2018.07.009.CrossRefGoogle Scholar
Noetinger, S., Bippus, A., and Tomescu, M., 2021, Palynology of a short sequence of the Lower Devonian Beartooth Butte Formation at Cottonwood Canyon (Wyoming): Age, depositional environments and plant diversity: Palaeontology (in press).CrossRefGoogle Scholar
Pérez-Huerta, A., 2013, Functional morphology and modifications on spine growth in the productid brachiopod Heteralosia slocomi: Acta Palaeontologica Polonica, v. 58, p. 383390, https://doi.org/10.4202/app.2010.0096.Google Scholar
Peryt, T.M., 1974, Spirorbid-algal stromatolites: Nature, v. 249, p. 239240.CrossRefGoogle Scholar
Peterson, J.A., 1981, Stratigraphy and sedimentary facies of the Madison limestone and associated rocks in parts of Montana, North Dakota, South Dakota, Wyoming, and Nebraska: U.S. Geological Survey, Numbered Series 81–642, 92 p.10.3133/ofr81642CrossRefGoogle Scholar
Pierce, W.G., and Nelson, W.H., 1971, Geologic map of the Beartooth Butte quadrangle, Park County, Wyoming (1:62500), USGS Numbered Series Geologic Quadrangle 93: Reston, Virginia, U.S. Geological Survey.Google Scholar
Playford, G., 1983, The Devonian miospore genus Geminospora Balme 1962: A reappraisal based upon topotypic G. lemurata (type species): Memoirs of the Association of Australasian Palaeontologists, v. 1, p. 311325.Google Scholar
Pruss, S.B., Payne, J.L., and Bottjer, D.J., 2007, Placunopsis bioherms: The first metazoan build-ups following the end-Permian mass extinction: Palaios, v. 22, p. 1723, https://doi.org/10.2110/palo.2005.p05-050r.CrossRefGoogle Scholar
Racki, G., and Racka, M., 1981, Ecology of the Devonian charophyte algae from the Holy Cross Mts.: Acta Geologica Polonica, v. 3/4, p. 213222.Google Scholar
Richardson, J.B., 1965, Middle Old Red Sandstone spore assemblages from the Orcadian Basin, northeast Scotland: Palaeontology, v. 7, p. 559605.Google Scholar
Richardson, J.B., and McGregor, D.C., 1986, Silurian and Devonian spore zones of the Old Red Sandstone continent and adjacent regions: Geological Survey of Canada, Bulletin, v. 364, p. 179.Google Scholar
Sandberg, C.A, 1961, Widespread Beartooth Butte Formation of Early Devonian Age in Montana and Wyoming and its paleogeographic significance: American Association of Petroleum Geologists Bulletin, v. 45, p. 13011309.Google Scholar
Sandberg, C.A., 1963, Spirorbal limestone in the Souris River(?) Formation of Late Devonian age at Cottonwood Canyon, Bighorn Mountains, Wyoming: U.S. Geological Survey Professional Paper, v. 475-C, p. 1416.Google Scholar
Sandberg, C.A, 1965, Nomenclature and correlation of lithologic subdivisions of the Jefferson and Three Forks formations of southern Montana and northern Wyoming: U.S. Geological Survey Bulletin, v. 1194-N, p. 119.Google Scholar
Sandberg, C.A., 1967, Measured sections of Devonian rocks in northern Wyoming: Geological survey of Wyoming: Wyoming State Geological Survey Bulletin, v. 52, p. 191.Google Scholar
Sandberg, C.A., and McMannis, W.J., 1964, Occurrence and paleogeographic significance of the Maywood Formation of Late Devonian age in the Gallatin range, southwestern Montana: U.S. Geological Survey Professional Paper, v. 501-C, p. 5054.Google Scholar
Schweitzer, H.-J., 1983, Die Unterdevonflora des Rheinlandes, 1 Teil: Palaeontographica Abteilung B, v. 189, p. 1138.Google Scholar
Shcherbakov, D.E., Vinn, O., and Zhuravlev, A.Y., 2021, Disaster microconchids from the uppermost Permian and Lower Triassic lacustrine strata of the Cis-Urals and the Tunguska and Kuznetsk basins (Russia): Geological Magazine, 158: 13351357, https://doi.org/10.1017/S0016756820001375.CrossRefGoogle Scholar
Silberling, N.J., and Roberts, R.J., 1962, Pre-Tertiary stratigraphy and structure of northwestern Nevada: Geological Society of America Special Paper, v. 72, p. 154.10.1130/SPE72-p1CrossRefGoogle Scholar
Smith, J.F. Jr., and Ketner, K.B., 1968, Devonian and Mississippian rocks and the date of the Roberts Mountains thrust in the Carlin-Piñon Range area, Nevada: U.S. Geological Survey Bulletin, v. 1251-I, p. 118.Google Scholar
Sowerby, J., 1822–1823, The Mineral Conchology of Great Britain, Volume 4: London, Arding, 170 p.Google Scholar
Speed, R.C., Elison, M.W., and Heck, F.R., 1988, Phanerozoic tectonic evolution of the Great Basin, in Ernst, W.G., ed., Metamorphism and Crustal Evolution of the Western United States (Rubey Volume 7): Englewood Cliffs, New Jersey, Prentice-Hall, p. 572605.Google Scholar
Streel, M., and Scheckler, S.E., 1990, Miospore lateral distribution in upper Famennian alluvial lagoonal to tidal facies from eastern United States and Belgium: Review of Palaeobotany and Palynology, v. 64, p. 315324.CrossRefGoogle Scholar
Streel, M., Higgs, K., Loboziak, S., Riegel, W., and Steemans, P., 1987, Spore stratigraphy and correlation with faunas and floras in the type marine Devonian of the Ardenne-Rhenish regions: Review of Palaeobotany and Palynology, v. 50, p. 211229.CrossRefGoogle Scholar
Suttner, T.J., and Lukeneder, A., 2004, Accumulations of late Silurian serpulid tubes and their palaeoecological implications (Blumau-Formation; Burgenland; Austria): Annalen des Naturhistorischen Museums in Wien, ser. A, v. 105, p. 175187.Google Scholar
Tanner, W., 1984, A fossil flora from the Beartooth Butte Formation of northern Wyoming [Ph.D. dissertation]: Carbondale, Southern Illinois University, 222 p.Google Scholar
Taylor, P.D., 2020, Bryozoan Paleobiology: London, Wiley-Blackwell, 336 p.CrossRefGoogle Scholar
Taylor, P.D., and Lewis, J.E., 2003, A new skeletal structure in a cyclostome bryozoan from Taiwan: Journal of Natural History, v. 37, p. 29592965, https://doi.org/10.1080/0022293021000007471.CrossRefGoogle Scholar
Taylor, P.D., and Vinn, O., 2006, Convergent morphology in small spiral worm tubes ('Spirorbis') and its palaeoenvironmental implications: Journal of the Geological Society, London, v. 163, p. 225228, https://doi.org/10.1144/0016-764905-145.CrossRefGoogle Scholar
Taylor, P.D., Vinn, O., and Wilson, M.A., 2010, Evolution of biomineralisation in ‘lophophorates’: Special Papers in Palaeontology, v. 84, p. 317333.Google Scholar
Toomey, D.F., and Cys, J.M., 1977, Spirorbid/algal stromatolites, a probable marginal marine occurrence from the lower Permian of New Mexico, U.S.A.: Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, v. 1977/6, p. 331342.Google Scholar
Trueman, A.E., 1942, Supposed commensalisms of Carboniferous spirorbids and certain non-marine lamellibranches: Geological Magazine, v. 79, p. 312320.CrossRefGoogle Scholar
Turnau, E., 2014, Floral change during the Taghanic Crisis: Spore data from the Middle Devonian of northern and south-eastern Poland: Review of Palaeobotany and Palynology, v. 200, p. 108121, https://doi.org/10.1016/j.revpalbo.2013.08.004.CrossRefGoogle Scholar
Vieira, L.M., and Stampar, S.N., 2014, A new Fenestrulina (Bryozoa, Cheilostomata) commensal with tube-dwelling anemones (Cnidaria, Ceriantharia) in the tropical southwestern Atlantic: Zootaxa, v. 3780, p. 365374, https://doi.org/10.11646/zootaxa.3780.2.8.CrossRefGoogle ScholarPubMed
Vinn, O., 2010, Adaptive strategies in the evolution of encrusting tentaculitoid tubeworms: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 292, p. 211221, https://doi.org/10.1016/j.palaeo.2010.03.046.CrossRefGoogle Scholar
Vinn, O., and Eyzenga, J., 2021, When did spines appear in cornulitids—A new spiny Cornulites from the Upper Ordovician of Baltica: Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, v. 299/1, p. 99105, https://doi.org/10.1127/njgpa/2021/0957.CrossRefGoogle Scholar
Vinn, O., and Mutvei, H., 2005, Observations on the morphology and affinities of cornulitids from the Ordovician of Anticosti Island and the Silurian of Gotland: Journal of Paleontology, v. 79, p. 726737.CrossRefGoogle Scholar
Vinn, O., and Mutvei, H., 2009, Calcareous tubeworms of the Phanerozoic: Estonian Journal of Earth Sciences, v. 58, p. 286296, https://doi.org/10.3176/earth.2009.4.07.CrossRefGoogle Scholar
Vinn, O., and Taylor, P.D., 2007, Microconchid tubeworms from the Jurassic of England and France: Acta Palaeontologica Polonica, v. 52, p. 391399.Google Scholar
Vinn, O., and Wilson, M.A., 2010, Microconchid-dominated hardground association from the late Pridoli (Silurian) of Saaremaa, Estonia: Palaeontologia Electronica, v. 13.2.9A, p. 112.Google Scholar
Vinn, O., and Zatoń, M., 2012, Phenetic phylogenetics of tentaculitoids—Extinct, problematic calcareous tube-forming organisms: GFF, v. 134, p. 145156.10.1080/11035897.2012.669788CrossRefGoogle Scholar
Voigt, E., 1992, Stutz-, Anker- und Haftorgane beirezenten und fossilen Bryozoen (Cyclostomata und Cheilostomata): Verhandlungen des Naturwissenschaftlichen Vereins in Hamburg, v. 33, p. 155189.Google Scholar
Weedon, M.J., 1990, Shell structure and affinity of vermiform ‘gastropods’: Lethaia, v. 23, p. 297309.CrossRefGoogle Scholar
Weedon, M.J., 1991, Microstructure and affinity of the enigmatic Devonian tubular fossils Trypanopora: Lethaia, v. 24, p. 223227.CrossRefGoogle Scholar
Weedon, M.J., 1994, Tube microstructure of Recent and Jurassic serpulid polychaetes and the question of the Palaeozoic ‘spirorbids’: Acta Palaeontologica Polonica, v. 39, p. 115.Google Scholar
Wilson, M.A., Vinn, O., and Yancey, T.E., 2011, A new microconchid tubeworm from the lower Permian (Artinskian) of central Texas, U.S.A.: Acta Palaeontologica Polonica, v. 56, p. 785791, https://doi.org/10.4202/app.2010.0086.CrossRefGoogle Scholar
Wright, A.D., 1963, The fauna of the Portrane Limestone, 1, The inarticulate brachiopods: Bulletin of the British Museum (Natural History), Geology Series, v. 8, p. 221254.CrossRefGoogle Scholar
Wright, A.D., and Nõlvak, J., 1997, Functional significance of the spines of the Ordovician lingulate brachiopod Acathambonia: Palaeontology, v. 40, p. 113119.Google Scholar
Yang, H., Chen, Z.-Q., Wang, Y., Ou, W., Liao, W., and Mei, X., 2015, Palaeoecology of microconchids from microbialites near the Permian-Triassic boundary in South China: Lethaia, v. 48, p. 497508, https://doi.org/10.1111/let.12122.CrossRefGoogle Scholar
Yang, H., Chen, Z.-Q., Mei, X., and Sun, Y., 2021, Early Triassic microconchids from the Perth Basin, Western Australia: Palaeoecology and flourishing in the aftermath of the end-Permian mass extinction: Geological Journal, https://doi.org/10.1002/gj.4115.CrossRefGoogle Scholar
Zatoń, M., and Borszcz, T., 2013, Encrustation patterns on post-extinction early Famennian (Late Devonian) brachiopods from Russia: Historical Biology, v. 25, p. 112, https://doi.org/10.1080/08912963.2012.658387.CrossRefGoogle Scholar
Zatoń, M., and Krawczyński, W., 2011a, Microconchid tubeworms across the upper Frasnian–lower Famennian interval in the Central Devonian Field, Russia: Palaeontology, v. 54, p. 14551473, https://doi.org/10.1111/j.1475-4983.2011.01110.x.CrossRefGoogle Scholar
Zatoń, M., and Krawczyński, W., 2011b, New Devonian microconchids (Tentaculita) from the Holy Cross Mountains, Poland: Journal of Paleontology, v. 85, p. 757769, https://doi.org/10.1666/11-005.1.CrossRefGoogle Scholar
Zatoń, M., and Mazurek, D., 2011, [Microconchids a little known group of fossil organisms and their occurrence in the upper Carboniferous of the Upper Silesia]: Przegląd Geologiczny, v. 59, p. 157162. [in Polish with English abstract]Google Scholar
Zatoń, M., and Mundy, D.J.C., 2020, Microconchus cravenensis n. sp.: A giant among microconchid tubeworms: Journal of Paleontology, v. 94, p. 10511058, https://doi.org/10.1017/jpa.2020.45.CrossRefGoogle Scholar
Zatoń, M., and Olempska, E., 2017, A family-level classification of the order Microconchida (class Tentaculita) and the description of two new microconchid genera: Historical Biology, v. 29, p. 885894, https://doi.org/10.1080/08912963.2016.1261858.CrossRefGoogle Scholar
Zatoń, M., and Peck, R.L., 2013, Morphology and palaeoecology of new, non-marine microconchid tubeworm from lower Carboniferous (Upper Mississippian) of West Virginia, USA: Annales Societatis Geologorum Poloniae, v. 83, p. 3750.Google Scholar
Zatoń, M., and Vinn, O., 2011, Microconchids and the rise of modern encrusting communities: Lethaia, v. 44, p. 57, https://doi.org/10.1111/j.1502-3931.2010.00258.x.CrossRefGoogle Scholar
Zatoń, M., Vinn, O., and Tomescu, A.M.F., 2012a, Invasion of freshwater and variable marginal marine habitats by microconchid tubeworms—An evolutionary perspective: Geobios, v. 45, p. 603610, https://doi.org/10.1016/j.geobios.2011.12.003.CrossRefGoogle Scholar
Zatoń, M., Wilson, M.A., and Vinn, O., 2012b, Redescription and neotype designation of the Middle Devonian microconchid (Tentaculita) species ‘Spirorbisangulatus Hall, 1861: Journal of Paleontology, v. 86, p. 417424, https://doi.org/10.1666/11-115.1.CrossRefGoogle Scholar
Zatoń, M., Zhuravlev, A., Rakociński, M., Filipiak, P., Borszcz, T., Krawczyński, W., Wilson, M.A., and Sokiran, E., 2014a, Microconchid-dominated cobbles from the Upper Devonian of Russia: Opportunism and dominance in a restricted environment following the Frasnian-Famennian biotic crisis: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 401, p. 142153, https://doi.org/10.1016/j.palaeo.2014.02.029.CrossRefGoogle Scholar
Zatoń, M., Grey, M., and Vinn, O., 2014b, Microconchid tubeworms (class Tentaculita) from the Joggins Formation (Pennsylvanian), Nova Scotia, Canada: Canadian Journal of Earth Sciences, v. 51, p. 669676, https://doi.org/10.1139/cjes-2014-0061.CrossRefGoogle Scholar
Zatoń, M., Niedźwiedzki, G., Blom, H., and Kear, B., 2016a, Boreal earliest Triassic biotas elucidate globally depauperate hard substrate communities after the end-Permian mass extinction: Scientific Reports, v. 6, p. 36345, https://doi.org/10.1038/srep36345.CrossRefGoogle Scholar
Zatoń, M., Wilson, M.A., and Vinn, O., 2016b, Comments on the paper of Gierlowski-Kordesch and Cassle ‘The ‘Spirorbis‘ problem revisited: Sedimentology and biology of microconchids in marine-nonmarine transition’ [Earth-Science Reviews, 148 (2015): 209–227]: Earth-Science Reviews, v. 152, p. 198200, https://doi.org/10.1016/j.earscirev.2015.11.012.CrossRefGoogle Scholar
Zatoń, M., Niedźwiedzki, G., Rakociński, M., Blom, H., and Kear, B.P., 2018, Earliest Triassic metazoan bioconstructions from East Greenland reveal a pioneering benthic community in the immediate aftermath of the end-Permian mass extinction: Global and Planetary Change, v. 167, p. 8798, https://doi.org/10.1016/j.gloplacha.2018.05.009.CrossRefGoogle Scholar