Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-25T19:53:01.447Z Has data issue: false hasContentIssue false

When Life Got Smart: The Evolution of Behavioral Complexity Through the Ediacaran and Early Cambrian of NW Canada

Published online by Cambridge University Press:  15 October 2015

Calla Carbone
Affiliation:
Department of Geological Sciences and Geological Engineering, Queen's University, Kingston, ON, K7L 3N6, Canada, ; and
Guy M. Narbonne
Affiliation:
Department of Geological Sciences and Geological Engineering, Queen's University, Kingston, ON, K7L 3N6, Canada, ; and

Abstract

Ediacaran and early Cambrian strata in NW Canada contain abundant trace fossils that record the progressive development of complex behavior in early animal evolution. Five feeding groups can be recognized: microbial grazing, deposit-feeding, deposit-feeding/predatory, filter-feeding/predatory, and arthropod tracks and trails. The lower Blueflower Formation (ca. 560–550 Ma) contains abundant burrows that completely cover bedding surfaces with small (∼1 mm diameter) cylindrical burrows that were strictly restricted to microbial bedding surfaces and exhibited only primitive and inconsistent avoidance strategies. The upper Blueflower contains three-dimensional avoidance burrows and rare filter-feeding or possibly predatory burrows, suggesting increased behavioral responses in food gathering that marked the beginning of the agronomic revolution in substrate utilization. Cambrian strata of the Ingta Formation contain systematically meandering burrows and more diverse feeding strategies, including the onset of treptichnid probing burrows that may reflect predation. These observations imply that Ediacaran burrowers were largely characterized by crude, two-dimensional avoidance meanders that represented simple behavioral responses of individual burrowers to sensory information, and that the subsequent development of more diverse and complex feeding patterns with genetically programmed search pathways occurred during the earliest stages of the Cambrian explosion. These observations further imply that changes occurred in both the food source and substrate during the ecological transition from Proterozoic matgrounds to Phanerozoic mixgrounds.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aitken, J. D. 1989. Uppermost Proterozoic formations in central Mackenzie Mountains, Northwest Territories, Canada. Geological Survey of Canada Bulletin, 368:126.Google Scholar
Alpert, S. P. 1973. Bergaueria Prantl (Cambrian and Ordovician), a probable actinian trace fossil. Journal of Paleontology, 47:919924.Google Scholar
Amthor, J. E., Grotzinger, J. P., Schröder, S., Bowring, S. A., Ramezani, J., Martin, M. W., and Matter, A. 2003. Extinction of Cloudina and Namacalathus at the Precambrian–Cambrian boundary in Oman. Geology, 31:431434.2.0.CO;2>CrossRefGoogle Scholar
Antcliffe, J. B., Gooday, A. J., and Brasier, M. D. 2011. Testing the protozoan hypothesis for Ediacaran fossils: a developmental analysis of Palaeopaschichnus . Palaeontology, 54:1,1571,175.Google Scholar
Archer, A. W. and Maples, C. G. 1984. Trace-fossil distribution across a marine-to-nonmarine gradient in the Pennsylvanian of southwest Indiana. Journal of Paleontology, 48:448466.Google Scholar
Bambach, R. K., Bush, A. M., and Erwin, D. H. 2007. Autecology and the filling of ecospace: key metazoan radiations. Palaeontology, 50:122.CrossRefGoogle Scholar
Bandel, K. 1967. Trace fossils from two Upper Pennsylvanian sandstones in Kansas. The University of Kansas, Paleontological Contributions, 18:113.Google Scholar
Banks, N. L. 1970. Trace fossils from the late Precambrian and lower Cambrian of Finmark, Norway. Geological Journal Special Issue, 3:1924.Google Scholar
Banks, N. L. 1973. Trace fossils in the Halkhavarre section of the Dividal Group (?late Precambrian–lower Cambrian), Finmark. Norsk Geologisk Undersökelse, 288:16.Google Scholar
Bartley, J.K., Pope, M., Knoll, A. H., Semikhatov, M. A., and Petrov, P. Y. 1998. A Vendian–Cambrian boundary succession from the northwestern margin of the Siberian Platform: stratigraphy, palaeontology, chemostratigraphy and correlation. Geological Magazine, 135:473494.Google Scholar
Bergström, J. 1976. Lower Palaeozoic trace fossils from eastern Newfoundland. Canadian Journal of Earth Sciences, 13:1, 6131, 633.Google Scholar
Billings, E. 1872. Fossils in Huronian rocks. Canadian Naturalist and Quarterly Journal of Science, 6:478.Google Scholar
Bottjer, D. J., Hagadorn, J. W., and Dornbos, S. Q. 2000. The Cambrian substrate revolution. GSA Today, 10:17.Google Scholar
Brandt, D. S. 2008. Multiple Rusophycus (arthropod ichnofossil) assemblages and their significance. Ichnos, 15:2843.Google Scholar
Brasier, M. D., Cowie, J., and Taylor, M. 1994. Decision on the Precambrian–Cambrian boundary stratotype. Episodes, 17:38.Google Scholar
Buatois, L. A. and Mángano, M. G. 1993. The ichnotaxonomic status of Plangtichnus and Treptichnus . Ichnos, 2:217224.Google Scholar
Buatois, L. A. and Mángano, M. G. 2003. Early colonization of the deep sea: ichnologic evidence of deep-marine benthic ecology from the early Cambrian of northwest Argentina. Palaios, 18:572581.2.0.CO;2>CrossRefGoogle Scholar
Buatois, L. A. and Mángano, M. G. 2004. Terminal Proterozoic–early Cambrian ecosystems: ichnology of the Puncoviscana Formation, northwest Argentina. Fossils and Strata, 51:116.CrossRefGoogle Scholar
Buatois, L. A. and Mángano, M. G. 2011 a. The déja vu effect: recurrent patterns in exploitation of ecospace, establishment of the mixed layer, and distribution of matgrounds. Geology, 39:1,1631,166.Google Scholar
Buatois, L. A. and Mángano, M. G. 2011 b. The trace-fossil record of organism-matground interactions in space and time, p. 1528. In Noffke, N. and Chafetz, H. (eds.), Microbial mats in Siliciclastic Sediments. SEPM Special Publication 101.Google Scholar
Buatois, L. A. and Mángano, M. G. 2012. An early Cambrian shallow-marine ichnofauna from the Puncoviscana Formation of northwest Argentina: the interplay between sophisticated feeding behaviors, matgrounds and sea-level changes. Journal of Paleontology, 86:718.Google Scholar
Buatois, L. A., Almond, J., and Germs, G. J. B. 2013. Environmental tolerance and range offset of Treptichnus pedum: implications for the recognition of the Ediacaran–Cambrian boundary. Geology, 41:519522.Google Scholar
Callow, R. H. T. and Brasier, M. D. 2009. Remarkable preservation of microbial mats in Neoproterozoic siliciclastic settings: Implications for Ediacaran taphonomic models. Earth Science Reviews, 96:207219.CrossRefGoogle Scholar
Chen, Z., Zhou, C., Meyer, M., Xiang, K., Schiffbauer, J. D., Yuan, X., and Xiao, S. 2013. Trace fossil evidence for Ediacaran bilaterian animals with complex behaviors. Precambrian Research, 224:690701.CrossRefGoogle Scholar
Clarkson, E., Levi-Setti, R., and Horváth, G. 2006. The eyes of trilobites: the oldest preserved visual system. Arthropod Structure and Development, 35:247259.CrossRefGoogle ScholarPubMed
Conway Morris, S. 1977. Fossil priapulid worms. Special Papers in Palaeontology, 20:195.Google Scholar
Conway Morris, S. and Fritz, W. H. 1980. Shelly microfossils near the Precambrian–Cambrian boundary, Mackenzie Mountains, northwestern Canada. Nature, 386:381384.CrossRefGoogle Scholar
Cowie, J. W. and Brasier, M. D. 1989. The Precambrian–Cambrian Boundary: Oxford Monograph on Geology and Geophysics. Oxford University Press, Oxford, No. 12, 213 p.Google Scholar
Crimes, T. P. 1970. Trilobite tracks and other trace fossils from the upper Cambrian of North Wales. Geological Journal, 7:4768.Google Scholar
Crimes, T. P. 1973. The production and preservation of trilobite resting and furrowing traces. Lethaia, 8:3548.Google Scholar
Crimes, T. P. 1987. Trace fossils and correlation of late Precambrian and early Cambrian strata. Geological Magazine, 124:97119.Google Scholar
Crimes, T. P. 1992. Changes in the trace fossil biota across the Proterozoic–Phanerozoic boundary. Journal of the Geological Society, London, 149:637646.Google Scholar
Crimes, T. P. 1994. The period of early evolutionary failure and the dawn of evolutionary success: The record of biotic changes across the Precambrian–Cambrian boundary, p. 105133. In Donovan, S. K. (ed.), The Palaeobiology of Trace Fossils. John Wiley and Sons, Chichester.Google Scholar
Crimes, T. P. and Anderson, M. M. 1985. Trace fossils from late Precambrian–early Cambrian strata of southeastern Newfoundland (Canada): temporal and environmental implications. Journal of Paleontology, 59:310343.Google Scholar
Crimes, T. P. and Fedonkin, M. A. 1994. Evolution and dispersal of deep sea traces. Palaois, 9:7483.Google Scholar
Crimes, T.P. and McIlroy, D. 1999. A biota of Ediacaran aspect from lower Cambrian strata on the Digermul Peninsula, Arctic Norway. Geological Magazine, 136:633642.Google Scholar
Dahmer, G. 1937. Lebensspuren aus dem Taunusquarzit und den Siegener Schichten (Unterdevon). Preussische Geologische Landesanstalt zu Berlin, Jahrbuch 193657: 523539.Google Scholar
Dalrymple, R. W. and Narbonne, G. M. 1996. Continental slope sedimentation in the Sheepbed Formation (Neoproterozoic, Windermere Supergroup), Mackenzie Mountains, NWT. Canadian Journal of Earth Sciences, 33:848862.CrossRefGoogle Scholar
De Saporta, L. C. J. G. 1884. Les organismes problematiques des anciennes mers. G. Masson, Paris, 102 p.Google Scholar
d'Orbigny, A. D. 1882. Voyages darts l'Amérique méridionale—le Bresil, la République orientale d'Uruguay, la République Argentine, la Patagonie, la République du Chili, la République de Bolivia, la republique du Pérou—éxécuté pendant les annés 1826, 1827, 1828, 1829, 1830, 1831, 1832, et 1833. Pitois-Levrault, Ve Levrault, Paris, Strasbourg, 3.Google Scholar
Droser, M. L., Gehling, J. G., and Jensen, S. 2005. Ediacaran trace fossils: true and false, p.125–138. In Briggs, D. E. G. (ed.), Evolving Form and Function: Fossils and Development: Proceedings of a Symposium honoring Adolf Seilacher for his Contributions to Paleontology, in Celebration of his 80th Birthday. New Haven, Peabody Museum of Natural History, Yale University.Google Scholar
Droser, M. L., Jensen, S., and Gehling, J. G. 2002. Trace fossils and substrates of the terminal Proterozoic–Cambrian transition: Implications for the record of early bilaterians and sediment mixing. Proceedings of the National Academy of Sciences of the United States of America, 99:12,57212,576.Google Scholar
Durden, C. J. 1984. Age zonation of the Early Pennsylvanian using fossil insects, p.175191. In Sutherlan, P. K. and Manger, W. L., (eds.), The Atokan Series (Pennsylvanian) and Its Boundaries—A Symposium. Oklahoma Geological Survey Bulletin, 136.Google Scholar
Emmons, E. 1844. The Taconic System: Based on Observations in New York, Massachusetts, Maine, Vermont, and Rhode Island. Caroll and Cook, Albany, 68 p.Google Scholar
Ewing, M. and Davis, R. A. 1967. Lebensspuren photographed on the ocean floor, p. 259294. In Hersey, J. B. (ed.), Deep-Sea Photography. The Johns Hopkins Press, Baltimore, Maryland.Google Scholar
Fedonkin, M. A. 1981. Belomorskaya biota venda. Trudy Akademii Nauk SSSR, 342:1100.Google Scholar
Fedonkin, M. A. 1982. Novoye rodovoye nazvaniye dokembriyskikh kishechnopolostnykh (A new generic name for some Precambrian coelenterates). Paleontologicheskiy Zhurnal, 2:137.Google Scholar
Fedonkin, M. A. 1985. Paleoichnology of Vendian Metazoa, p. 112116. In Sokolov, B. S. and Ivanovskiy, A. B. (eds.), The Vendian System 1: Historic-Geological and Palaeontological Basis. Nauka, Moscow.Google Scholar
Fenton, C. L. and Fenton, M. A. 1937. Burrows and trails from Pennsylvanian rocks of Texas. American Midland Naturalist, 18:1,0791,084.CrossRefGoogle Scholar
Fitch, A. 1850. A historical, topographical and agricultural survey of the County of Washington, pt. 2–5. Transactions of the New York Agricultural Society, 9:753944.Google Scholar
Fuchs, T. 1895. Studien über Fucoiden and Hieroglyphen. Akademie der Wissenschaften zu Wien, mathematischnaturwissenschaftliche Klasse. Denkschriften, 62:369448.Google Scholar
Gabrielse, H., Blusson, S. L. and Roddick, J. A. 1973. Geology of Flat River, Glacier Lake, and Wrigley Lake map-areas, District of Mackenzie and Yukon Territory. Geological Survey of Canada, Memoir 366.Google Scholar
Gehling, J. G. 1999. Microbial mats in terminal Proterozoic siliciclastics: Ediacaran death masks. Palaois, 14:4057.CrossRefGoogle Scholar
Gehling, J. G. and Droser, M. L. 2009. Textured organic surfaces associated with the Ediacaran biota in South Australia. Earth Science Reviews, 96:196206.Google Scholar
Gehling, J. G., Narbonne, G. M., and Anderson, M. M. 2000. The first named Ediacaran body fossil, Aspidella terranovica . Palaeontology, 43:427456.Google Scholar
Gehling, J. G., Droser, M., Jensen, S., and Runnegar, B. 2005. Ediacaran organisms: relating form to function, p. 4366. In Briggs, D. E. G. (ed.), Evolving Form and Function: Fossils and Development. A Special Publication of the Peabody Museum of Natural History, Yale University, New Haven, Connecticut.Google Scholar
Gehling, J. G., Jensen, S., Droser, M. L., Myrow, P. M., and Narbonne, G. M. 2001. Burrowing below the basal Cambrian GSSP, Fortune Head, Newfoundland. Geological Magazine, 138:213218.Google Scholar
Germs, G. J. B. 1972 a. Trace fossils from the Nama Group, South-West Africa. Journal of Paleontology, 46:864870.Google Scholar
Germs, G. J. B. 1972 b. New shelly fossils from Nama Group, South West Africa. American Journal of Science 272:752761.CrossRefGoogle Scholar
Germs, G. J. B. 1972 c. The stratigraphy and paleontology of the Lower Nama Group, South West Africa. Chamber of Mines Precambrian Research Unit, University of Capetown, Department of Geology Bulletin, 12:1250.Google Scholar
Geyer, G. and Uchman, A. 1995. Ichnofossil assemblages from the Nama Group (Neoproterozoic–lower Cambrian) in Namibia and the Proterozoic–Cambrian boundary problem revisited, p. 175202. In Geyer, G. and Landing, E. (eds.), Morocco ‘95–The lower Cambrian–Middle Cambrian Standard of Western Gondwana, Beringeria Special Issue 2.Google Scholar
Gibson, G. G. 1989. Trace fossils from the Late Precambrian Carolina slate belt, south-central North Carolina. Journal of Paleontology, 63:110.CrossRefGoogle Scholar
Gingras, M., Hagadorn, J. W., Seilacher, A., Lalonde, S. V., Pecoits, E., Petrash, D., and Konhauser, K. O. 2011. Possible evolution of mobile animals in association with microbial mats. Nature Geoscience, 4:372375.Google Scholar
Glaessner, M. F. 1969. Trace fossils from the Precambrian and basal Cambrian. Lethaia, 2:369393.Google Scholar
Glaessner, M. F. 1984. The dawn of animal life. A biohistorical study. Cambridge University Press, Cambridge, 244 p.Google Scholar
Grotzinger, J. P., Bowring, S. A., Saylor, S. Z., and Kaufman, A. J. 1995. Biostratigraphic and geochronologic constraints on early animal evolution. Science, 270:598604.Google Scholar
Gürich, G. 1930. Die bislang altesten Spuren von Organismen in Sudafrika. International Geological Congress (XV), 2:670680.Google Scholar
Hagadorn, J. W. and Bottjer, D. J. 1997. Wrinkle structures: microbially mediated sedimentary structures common in subtidal siliciclastic settings at the Proterozoic–Phanerozoic transition. Geology, 25:1,0471,050.Google Scholar
Hagadorn, J. W., Schellenberg, S. A., and Bottjer, D. J. 2000. Palaecology of a large early Cambrian bioturbator. Lethaia, 33:142156.Google Scholar
Haldeman, S. S. 1840. Supplement to number one of “A monography of Limniades, and other fresh-water univalve shells of North America,” containing descriptions of apparently new animals in different classes, and the names and characters of subgenera in Paludina and Anculosa. J. Dobson Philadelphia, 3 p.Google Scholar
Hall, J. 1847. Palaeontology of New York, Volume 1, C Van Benthuysen, Albany, 338 p.Google Scholar
Hall, J. 1852. Palaeontology of New York, Volume 2, C Van Benthuysen, Albany, 362 p.Google Scholar
Han, Y. and Pickerill, R. K. 1995. Taxonomic review of the ichnogenus Helminthopsis Heer 1877 with a statistical analysis of selected ichnospecies. Ichnos, 4:83118.Google Scholar
Häntzschel, W. 1962. Trace fossils and problematica, p. W177W245. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Pt. W, Miscellanea. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Häntzschel, W. 1975. Miscellanea. Supplement 1, Trace fossils and problematica, p. 269. In Teichert, C. (ed.), Treatise on invertebrate paleontology. Geological Society of America, University of Kansas Press, Boulder, Colorado, Lawrence.Google Scholar
Hayes, B. 2003. In search of the optimal scum-sucking bottom feeder, American Scientist, 91:392396.Google Scholar
Heer, O. 1877. Flora fossilis Helvetiae. Die vorweltliche flora der Schweiz. J. Wurster and Co., Zurich, 182 p.Google Scholar
Hitchcock, E. 1858. Ichnology of New England. A report on the sandstone of the Connecticut valley, especially its fossil footprints. W. White, Boston, 220 p.Google Scholar
Hofmann, H. J. 1981. First record of a late Proterozoic faunal assemblage in the North American Cordillera. Lethaia, 14:303310.Google Scholar
Hofmann, H. J. 1990. Computer simulation of trace fossils with random patterns, and the use of goniograms. Ichnos, 1:1522.Google Scholar
Hofmann, H. J. and Patel, I. M. 1989. Trace fossils from the type Etcheminian Series (lower Cambrian Ratcliffe Brook Formation), Saint John Area, New Brunswick, Canada. Geological Magazine, 126:139157.Google Scholar
Hofmann, H. J. and Mountjoy, E. W. 2010. Ediacaran body and trace fossils in Miette Group (Windermere Supergroup) near Salient Mountain, British Columbia, Canada. Canadian Journal of Earth Sciences, 47:1,3051,325.CrossRefGoogle Scholar
Hofmann, H. J., Fritz, W. H., and Narbonne, G. M. 1983. Ediacaran (Precambrian) fossils from the Wernecke Mountains, northwestern Canada. Science, 221:455457.Google Scholar
Hofmann, R., Mängano, M. G., Elicki, O. and Shinaq, R. 2012. Paleoecologic and biostratigraphic significance of trace fossils from shallow-to-marginal marine environments from the middle Cambrian (Stage 5) of Jordan. Journal of Paleontology, 86:931955.Google Scholar
Hua, H., Chen, Z., Yuan, X., Zhang, L. and Xiao, S. 2005. Skeletogenesis and asexual reproduction in the earliest biomineralizing animal Cloudina . Geology, 33:277280.Google Scholar
Ivantsov, A. Y. and Malakhovskaya, Y. E. 2002. Giant traces of Vendian animals. Doklady Earth Sciences, 385A:618622.Google Scholar
Jensen, S. 1997. Trace fossils from the lower Cambrian Mickwitzia sandstone, south-central Sweden. Fossils and Strata, 42:1111.Google Scholar
Jensen, S. 2003. The Proterozoic and earliest Cambrian trace fossil record: patterns, problems and perspectives. Integrative and Comparative Biology, 43:219228.CrossRefGoogle ScholarPubMed
Jensen, S. and Runnegar, B. N. 2005. A complex trace fossil from the Spitskop Member (terminal Ediacaran–?lower Cambrian) of southern Namibia. Geological Magazine, 142:561569.Google Scholar
Jensen, S., Gehling, J. G., and Droser, M. L. 1998. Ediacara-type fossils in Cambrian sediments. Nature, 393:567569.Google Scholar
Jensen, S., Saylor, B. Z., Gehling, J. G., and Germs, G. J. B. 2000. Complex trace fossils from the terminal Proterozoic of Namibia. Geology, 28:143146.Google Scholar
Jensen, S., Droser, M. L., and Gehling, J. G. 2006. A critical look at the Ediacaran trace fossil record, p. 115157. In Xiao, S. and Kaufman, J. K. (eds.), Neoproterozoic Geobiology and Paleobiology. Dordrecht, Spring.Google Scholar
Keighley, D. G. and Pickerill, R. K. 1995. Commentary: the ichnotaxa Palaeophycus and Planolites, historical perspectives and recommendations. Ichnos, 3:301309.Google Scholar
Keighley, D. G. and Pickerill, R. K. 1997. Systematic ichnology of the Mabou and Cumberland groups (Carboniferous) of western Cape Breton Island, eastern Canada, 1: burrows, pits, trails, and coprolites. Atlantic Geology, 33:181215.Google Scholar
Kitchell, J. A. 1979. Deep-sea foraging pathways: An analysis of randomness and resource exploitation. Paleobiology, 5:107125.Google Scholar
Koy, K. and Plotnick, R. E. 2007. Theoretical and experimental ichnology of mobile foraging, p. 428441. In Miller, W. III (ed.), Trace Fossils: Concepts, Problems, Prospects. Elsevier, Amsterdam.Google Scholar
Koy, K. and Plotnick, R. E. 2010. Ichnofossil morphology as a response to resource distribution: insights from modern invertebrate foraging. Palaeogeography, Palaeoclimatology, Palaeoecology, 292:272281.Google Scholar
Książkiewicz, M. 1958. Stratigrafia serii magurskiej w Beskidzie Średnim. Państwowy Instytut Geologiczny, Biulletyn, 153:4396.Google Scholar
Książkiewicz, M. 1968. O niektórych problematykach z fliszu Karpat Polskich (Część III). Rocznik Polskiego Towarzystwa Geologicznego W. Krakowie, 38:317.Google Scholar
Książkiewicz, M. 1970. Observations on the ichnofauna of the Polish Carpathians. Geological Journal Special Issue, 3:283322.Google Scholar
Książkiewicz, M. 1977. Trace fossils in the flysch of the Polish Carpathians. Palaeontologica Polonica, 36:1208.Google Scholar
Laflamme, M., Darroch, S. A. F., Tweedt, S. M., Peterson, K. J., and Erwin, D. H., 2013. The end of the Ediacara biota: extinction, biotic replacement, or Cheshire cat? Gondwana Research, 23:558573.Google Scholar
Landing, E. 1994. Precambrian–Cambrian boundary global stratotype ratified and a new perspective of Cambrian time. Geology, 22:179182.2.3.CO;2>CrossRefGoogle Scholar
Landing, E., Geyer, G., Brassier, M. D., and Bowring, S. A. 2013. Cambrian evolutionary radiation: context, correlation, and chronostratigraphy—overcoming deficiencies in the first appearance datum (FAD) concept. Earth-Science Reviews, 123:133172.Google Scholar
Lee, M. S. Y., Jago, J. B., D. C. garcía-bellido, Edgecombe, G. D., Gehling, J. G., and Paterson, J. R. 2011. Modern optics in exceptionally preserved eyes of the early Cambrian arthropods from Australia. Nature, 474:631634.Google Scholar
Lesley, J. P. 1890. A dictionary of the fossils of Pennsylvania and neighboring states named in the reports and catalogues of the Survey. Geological Survey of Pennsylvania, Report P4, 1283 p.Google Scholar
Liu, A. G., McIlroy, D., and Brasier, M. D. 2010. First evidence for locomotion in the Ediacara biota from the 565 Ma Mistaken Point Formation, Newfoundland. Geology, 38:123126.Google Scholar
Macdonald, F. A., Pruss, S. B., and Strauss, J. V. 2014. Trace fossils with spreiten from the late Ediacaran Nama Group, Namibia: complex feeding patterns five million years before the Precambrian–Cambrian boundary. Journal of Paleontology, 88:299308.Google Scholar
Macdonald, F. A., Strauss, J. V., Sperling, E. A., Halverson, G. P., Narbonne, G. M., Johnston, D. T., Kunzmann, M., Schrag, D. P., and Higgins, J. A. 2013. The stratigraphic relationship between the Shuram carbon isotope excursion, the oxygenation of Neoproterozoic oceans, and the first appearance of the Ediacara biota and bilatitarian trace fossils in northwestern Canada. Chemical Geology, 362:250272.Google Scholar
Macleay, W. S. 1839. Note on the Annelida, p. 699701. In Murchinson, R. I. (ed.), The Silurian System Part 2 Organic Remains. I. Murray, London.Google Scholar
MacNaughton, R. B. and Narbonne, G. M. 1999. Evolution and Ecology of Neoproterozoic–lower Cambrian trace fossils, NW Canada. Palaios, 14:97115.Google Scholar
MacNaughton, R. B., Dalrymple, R. W., and Narbonne, G. M. 1997 a. Multiple orders of relative sea-level change in an earliest Cambrian passive-margin succession, Mackenzie Mountains, northwestern Canada. Journal of Sedimentary Research, 67:622637.Google Scholar
MacNaughton, R. B., Dalrymple, R. W., and Narbonne, G. M. 1997 b. Early Cambrian braid-delta deposits, Mackenzie Mountains, north-western Canada. Sedimentology, 44:587609.Google Scholar
MacNaughton, R. B., Narbonne, G. M., and Dalrymple, R. W. 2000. Neoproterozoic slope deposits, Mackenzie Mountains, northwestern Canada: implications for passive-margin development and Ediacaran faunal ecology. Canadian Journal of Earth Sciences, 37:9971,020.Google Scholar
Maloof, A. C., Porter, S. M., Moore, J. L., Dudás, F. Ö., Bowring, S. A., Higgins, J. A., Fike, D. A., and Eddy, M. P. 2012. The earliest Cambrian record of animals and ocean geochemical change. Geological Society of America Bulletin, 11:1,7311,774.Google Scholar
Mángano, M. G., Buatois, L. A., Maples, C. G., and West, R. R. 2002. Ichnology of a Pennsylvanian equatorial tidal flat: the Stull Shale Member at Waverly, eastern Kansas. Kansas Geological Survey 245, 133 p.Google Scholar
Mángano, M. G., Bromley, R. G., Harper, D. A. T., Nielsen, A. T., Smith, M. P., and Vinther, J. 2012. Nonbiomineralized carapaces in Cambrian seafloor landscapes (Sirius Passet, Greenland): opening a new window into early Phanerozoic benthic ecology. Geology, 40:519522.Google Scholar
Maples, C. G. and Archer, A. W. 1987. Redescription of Early Pennsylvanian trace-fossil holotypes from the Whetstone Beds of Indiana. Journal of Paleontology, 61:890897.Google Scholar
Marenco, K. N. and Bottjer, D. J. 2008. The importance of Planolites in the Cambrian substrate revolution. Palaeogeography, Palaeoclimatology, Palaeoecology, 258:189199.Google Scholar
McIlroy, D. and Heys, G. R. 1997. Palaeobiological significance of Plagiogmus arcuatus from the lower Cambrian of central Australia. Alcheringa, 21:161178.Google Scholar
McIlroy, D. and Logan, G. A. 1999. The impact of bioturbation on infaunal ecology and evolution during the Proterozoic–Cambrian transition. Palaios, 14:5872.Google Scholar
Meneghini, G. G. A. 1850. Paleodictyon . In Savi, P. and Meneghini, G. (eds.), Observazione stratigrafiche e paleontologiche concernati la geologie della Toscana e dei paesi limitrofi (Appendix to R. R. Murchison, Memoria sulla struttura geologie delle Alpi). Stamperia granducale, Firenze, 246 p.Google Scholar
Menon, L.R., McIlroy, D., Brasier, M. D. 2013. Evidence for Cnidaria-like behavior in ca. 560 Ma Ediacaran Aspidella. Geology, 41:895.Google Scholar
Miller, S. A. 1889. North American geology and palaeontology for the use of amateurs, students, and scientists. Western Methodist book concern, Cincinnati, Ohio, 664 p.Google Scholar
Missarzhevsky, V. V. 1973. Konodontoobraznye organizmy iz pogranichnykh sloev kembriya i dokembriya Sibirskoj platformy i Kazakhstana. Problemy paleontologii i biostratigrafii nizhnego kembriya Sibiri i Dalínego vostoka, p. 5357.Google Scholar
Myannil, R. M. 1966. O vertikalnykh norkakh zaryvaniya v Ordovikskikh izvestiyakakh Pribaltiki. Akademiya Nauk SSSR, Paleontoloicheskiy Institut, p. 200207.Google Scholar
Narbonne, G. M. 1994. New Ediacaran fossils from the Mackenzie Mountains, northwestern Canada. Journal of Paleontology, 68:411416.Google Scholar
Narbonne, G. M. 1998. The Ediacara biota; a terminal Neoproterozoic experiment in the evolution of life. GSA Today, 8:16.Google Scholar
Narbonne, G. M. 2005. The Ediacara biota: Neoproterozoic origin of animals and their ecosystems. Annual Review of Earth and Planetary Sciences, 33:421442.Google Scholar
Narbonne, G. M. and Aitken, J. D. 1990. Ediacaran fossils from the Sekwi, Brook and Mountains, Mackenzie, Yukon, Canada. Palaeontology, 33:945980.Google Scholar
Narbonne, G. M. and Aitken, J. D. 1995. Neoproterozoic of the Mackenzie Mountains, northwestern Canada. Precambrian Research, 73:101121.Google Scholar
Narbonne, G. M. and Hofmann, H. J. 1987. Ediacaran biota of the Wernecke Mountains, Yukon, Canada. Palaeontology, 30:647676.Google Scholar
Narbonne, G. M., Myrow, P. M., Landing, E., and Anderson, M. M. 1987. A candidate stratotype for the Precambrian–Cambrian boundary, Fortune Head, Burin Peninsula, southeastern Newfoundland. Canadian Journal of Earth Sciences, 24:1,2771,293.Google Scholar
Narbonne, G. M., Kaufman, A. J., and Knoll, A. H. 1994. Integrated chemostratigraphy and biostratigraphy of the Windermere Supergroup, northwestern Canada: implications for Neoproterozoic correlations and the early evolution of animals. Geological Society of America Bulletin, 106:1,2811,292.Google Scholar
Narbonne, G. M., Xiao, S., and Shields, G. 2012. Ediacaran Period, p. 413445. In Gradstein, F., Ogg, J., Schmidt, M.D., and Ogg, G. (eds.), Geologic Timescale 2012. Elsevier, New York.Google Scholar
Narbonne, G. M., Laflamme, M., Trusler, P. W., Dalrymple, R. W., and Greentree, C. 2014. Deep-water Ediacaran fossils from Northwestern Canada: taphonomy, ecology, and evolution. Journal of Paleontology, 88:207223.CrossRefGoogle Scholar
Nathan, R., Getz, W. M., Revilla, E., Holyoak, M., Kadmon, R., Saltz, D., and Smouse, P. E. 2008. A movement ecology paradigm for unifying organismal movement research. Proceedings of the National Academy of Science of the United States of America, 105:19,05219,059.Google Scholar
Nicholson, H. A. 1873. Contributions to the study of the errant annelids of the older Palaeozoic rocks. Royal Society of London Proceedings, 21:288290. (Also Geological Magazine, 10:309–310).Google Scholar
Nowlan, G. S., Narbonne, G. M., and Fritz, W. H. 1985. Small shelly fossils and trace fossils near the Precambrian–Cambrian boundary in the Yukon Territory, Canada. Lethaia, 18:233256.Google Scholar
Orłowski, S. 1968. Cambrian of Łysogóry Anticline in the Holy Cross Mountains. Biuletyn Instytutu Geologicznego, 10:195221. (In Polish) Google Scholar
Palij, V. M. 1976. Remains of soft-bodied animals and trace fossils from the upper Precambrian and lower Cambrian of Podolia, p. 6376. In Paleontologiya i stratigraphiya verkhnego dokembriya I nizhnego kembriya yugo-zapada Vostochno-Europeiskoi platformy. Naulova Dumka, Viev. (In Ukranian) Google Scholar
Palij, V. M., Posti, E., and Fedonkin, M. A. 1979. Myagkotelye metazoa i iskopaemye sledy zhivotnykh venda i rannego kembriya, p. 4982. In Keller, B. M. and Yu, A. Rozanov (eds.), Paleontologiya verkhnedokembrijskikh i kembrijskikh otlozhenij Vostochno-Evropejskoj platformy, Nauka, Moscow.Google Scholar
Paterson, J. R., García-bellido, D. C., Lee, M. S. Y., Brock, G. A., Jago, J. B., and Edgecombe, G. D. 2011. Acute vision in the giant Cambrian predator Anomalocaris and the origin of compound eyes. Nature, 480:237240.Google Scholar
Pemberton, S. G. and Frey, R. W. 1982. Ichnological nomenclature and the Palaeophycus–Planolites dilemma. Journal of Paleontology, 56:843881.Google Scholar
Pickerill, R. K. 1982. Glockerichnus, a new name for the trace fossil ichnogenus Glockeria Książkiewicz, 1968. Journal of Paleontology, 56:816.Google Scholar
Plotnick, R. E. and Koy, K. 2005 . Let us prey: simulations of grazing traces in the fossil record. Proceedings GeoComputation 2005: 8th International Conference on GeoComputation, Ann Arbor, Michigan, 1:113.Google Scholar
Plotnick, R. E. 2007. Chemoreception, odor landscapes, and foraging in ancient marine landscapes. Palaeontologia Electronica, 10:111.Google Scholar
Plotnick, R. E. 2012. Behavioral biology of trace fossils. Paleobiology, 38:459473.Google Scholar
Plotnick, R. E., Dornbos, S. Q., and Chen, J. 2010. Information landscapes and sensory ecology of the Cambrian Radiation. Paleobiology, 36:303317.Google Scholar
Prantl, F. 1945. Dvé záhadné zkamenéliny (stopy) z vrstev chrustenickych-dδ2, Rozpravy II, Tridy Ceské Akademie, 55 (3):38.Google Scholar
Prescott, T. J. and Ibbotson, C. 1997. A robot tracemaker: modeling the fossil evidence of early invertebrate behavior. Artificial Life, 3:289306.CrossRefGoogle Scholar
Raup, D. M. and Seilacher, A. 1969. Fossil foraging behavior: computer simulation. Science, 166:994995.Google Scholar
Richter, R. 1924. Flachseebeobachtungen zur Paläontologie und Geologie, VII–XI. Senckenbergiana, 6:119165.Google Scholar
Richter, R. 1937. Marken und Spuren aus allen Zeiten. I–II. Senckenbergiana, 19:150169.Google Scholar
Roedel, H. 1929. Ergänzung zu meiner Mitteilung über ein kambrisches Geschiebe mit problematischen Spuren. Zeitschrift für Geichiebeforschung, 5:4851.Google Scholar
Ross, G. M., Parrish, R. R., Villeneuve, M. E., and Bowring, S. A. 1989. Tectonic subdivision and U-Pb geochronology of the crystalline basement of the Alberta Basin, Western Canada. Geological Survey of Canada, Open File 2103.Google Scholar
Runnegar, B. N. 1992. Evolution of the earliest animals, p. 6593. In Schopf, J.W. (ed.), Major Events in the History of Life. Jones and Publishers, Bartlett, Boston. Google Scholar
Sacco, F. 1888. Note di Paleoicnologia Italiana. Atti Societari Italiano Scienza Naturali, 31:151192.Google Scholar
Salter, J. W. 1857. On annelide-burrows and surface markings from the Cambrian rocks of the Longmynd and North Wales. Quarterly Journal of the Geological Society of London, 13:199205.Google Scholar
Schafhäutl, K. E. 1851. Geognostische Untersuchungen des südbayrischen Alpengebirges. Literarisch-artistische Anstalt, Müchen, 208 p.Google Scholar
Schmalfuss, H. 1981. Structure, pattern, and function of cuticular terraces in trilobites. Lethaia, 14:331341.Google Scholar
Seilacher, A. 1955. Spuren und Lebensweise der Trilobiten, p. 86116. In Schindewolf, O. H. (ed.), Beiträge zur Kenntnis des Kambriums in der Salt Range (Pakistan). Akademie der Wissenschaften und der Literatur in Mainz, Wiesbaden.Google Scholar
Seilacher, A. 1964. Sedimentological classification and nomenclature of trace fossils. Sedimentology 3:253256.Google Scholar
Seilacher, A. 1967. Bathymetry of trace fossils. Marine Geology, 5:413428.Google Scholar
Seilacher, A. 1974. Flysch trace fossils: evolution of behavioral diversity in the deep-sea. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte. 4:233245.Google Scholar
Seilacher, A. 1977. Evolution of trace fossil communities, p. 359376. In Hallam, A. (ed.), Patterns of Evolution, as Illustrated by the Fossil Record. Elsevier Scientific Publishing Company, Amsterdam.Google Scholar
Seilacher, A. 1985. Trilobite palaeobiology and substrate relationships. Transactions of the Royal Society of Edinburgh Earth Sciences, 76:231238.Google Scholar
Seilacher, A. 1999. Biomat-related lifestyles in the Precambrian. Palaios, 14:8693.Google Scholar
Seilacher, A. 2007. Trace Fossil Analysis. Springer Berlin Heidelberg, Berlin, 226 p.Google Scholar
Seilacher, A. and Hemleben, C. 1966. Beiträge sur sedimentation und Fossilführung des Hunsrückschiefers 14. Spurenfauna und Bildungsteife der Hunsrückschiefer (Unterdevon). Notizblatt des Hessischen Landesamtes für Bodenforschung zu Wiesbaden, 94:4053.Google Scholar
Seilacher, A. and Pflüger, F. 1994. From biomats to benthic agriculture: a biohistoric revolution, p. 97105. In Krumbein, W. E., Peterson, D. M., and Stal, L. J. (eds.), Biostabilization of Sediments. Bibliotheksund Informationssystem der Carl von Ossietzky Universität Odenburg.Google Scholar
Seilacher, A., Buatois, L. A., and Mángano, M. G. 2005. Trace fossils in the Ediacaran–Cambrian transition: behavioral diversification, ecological turnover and environmental shift. Palaeogeography, Palaeoclimatology, Palaeoecology, 227:323356.Google Scholar
Sperling, E. A., Frieder, C. A., Raman, A. V., Girguis, P. R., Levin, L. A., and Knoll, A. H. 2013. Oxygen, ecology, and the Cambrian radiation of animals. Proceedings of the National Academy of Sciences, 110:13,44613,451.Google Scholar
Sperling, E.A. and Vinther, J. 2010. A placozoan affinity for Dickinsonia and the evolution of late Proterozoic metazoan feeding modes. Evolution and Development, 12:201209.Google Scholar
Torell, O. M. 1870. Petrifacta Suecana Formationis Cambricae. Lunds Universitetshuset, Årskrift, 6:114.Google Scholar
Uchman, A. 1995. Taxonomy and palaeoecology of flysch trace fossils: the Marnosoarenacea Formation and associated facies (Miocene, Northern Apennines, Italy). Beringeria, 15:1115.Google Scholar
Uchman, A. 1998. Taxonomy and ethology of flysch trace fossils: revision of the Marian Ksiazkiewicz Collection and studies of complementary material. Annales Societatis Geologorum Poloniae, 68:105218.Google Scholar
Uchman, A., Nemec, W., Ilgar, A., and Messina, C. 2007. Lacustrine trace fossils and environmental conditions in the early Miocene Ermenek Basin, southern Turkey. Annales Societatis Geologorum Poloniae, 77:123139.Google Scholar
Vannier, J., Calandra, I., Gaillard, C., and Żylińska, A. 2010. Priapulid worms: pioneer horizontal burrowers at the Precambrian–Cambrian boundary. Geology, 38:711714.Google Scholar
Wade, M. 1972. Hydrozoa and scyphozoan and other medusoids from the Precambrian Ediacara fauna, South Australia. Palaeontology, 15:197225.Google Scholar
Webby, B. D. 1970. Late Precambrian trace fossils from New South Wales. Lethaia, 3:79109.Google Scholar
Weber, J. N., Peterson, B. K., and Hoekstra, H. E. 2013. Discrete genetic modules are responsible for complex burrow evolution in Peromyscus mice. Nature, 493:402405.Google Scholar
Wills, M. A., Briggs, D. E. G., Fortey, R. A., Wilkinson, M., and Sneath, P. H. A. 1998. An arthropod phylogeny based on fossil and recent taxa, p. 33106. In Edgecombe, G. D. (ed.), Arthropod Fossils and Phylogeny. Columbia University Press, New York.Google Scholar
Wilson, J. P., Grotzinger, J. P., Fischer, W. W., Hand, K. P., Jensen, S., Knoll, A. H., Abelson, J., Metz, J. M., Mcloughlin, N., Cohen, P. A., and Tice, M. M. 2012. Deep-water incised valley deposits at the Ediacaran–Cambrian boundary in southern Namibia contain abundant Treptichnus pedum . Palaios, 27:252273.Google Scholar
Wu, X. 1985. Trace fossils and their significance in non-marine turbidite deposits of Meozoic coal and oil bearing sequences from Yima-Jiyuan basin, western Henan, China. Acta Sedimentologica Sinica, 3:2331. (In Chinese) Google Scholar
Young, F. G. 1972. Early Cambrian and older trace fossils from the southern Cordillera of Canada. Journal of Earth Sciences, 9:117.Google Scholar