Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-27T15:49:57.448Z Has data issue: false hasContentIssue false

Two species of Hesslandona (Phosphatocopida, Crustacea) from the Upper Cambrian of western Hunan, South China and the phylogeny of Phosphatocopida

Published online by Cambridge University Press:  14 July 2015

Huaqiao Zhang
Affiliation:
1School of Earth and Space Sciences, Peking University, Beijing 100871, P. R. China 2State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, P. R. China,
Xi-Ping Dong
Affiliation:
1School of Earth and Space Sciences, Peking University, Beijing 100871, P. R. China 2State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, P. R. China,
Shuhai Xiao
Affiliation:
3Department of Geosciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA

Abstract

The phosphatocopids Hesslandona necopina Müller, 1964 and Hesslandona longispinosa (Kozur, 1974) new combination, recovered from the Upper Cambrian in western Hunan, South China, are described. The ontogenetic stages of H. necopina are revised, with newly defined second and third ontogenetic stages. The second stage is characterized by a bipartite mandibular limb stem consisting of separate coxa and basipod. The third stage is characterized by the partial fusion of the mandibular coxa and basipod. These two parts may become completely fused possibly in a later ontogenetic stage. Vestrogothia longispinosa Kozur, 1974 is reassigned to Hesslandona because of the presence of an interdorsum and a relatively narrow doublure. The new data reported here, plus earlier reports of phosphatocopids from the same section and horizon in western Hunan since 2005, are included in an updated phylogenetic analysis of the Phosphatocopida. Autapomorphies that define several monophyletic groups (e.g., the Crustacea sensu lato, Labrophora, Eucrustacea, Phosphatocopida, Euphosphatocopida, Vestrogothiina, Hesslandonina, and Dorsospinata) are discussed. The present analysis confirms results from earlier phylogenetic analyses in showing the Phosphatocopida-Eucrustacea sister-taxon relationship, but differs from them in supporting the paraphyly of the Hesslandonidae and the monophyly of the Vestrogothiidae.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brusca, K. C. and Brusca, G. J. 2003. Invertebrates. Sinauer Associates, Inc., Massachusetts, 936 p.Google Scholar
Brünnich, M. T. 1772. Zoologiae fundamenta praelectionibus academicis accomodata. Apud Friderich Pelt, Hafniae et Lipsiae (=Copenhagen and Leipzig), 254 p.CrossRefGoogle Scholar
Butterfield, N. J. 2003. Exceptional fossils preservation and the Cambrian explosion. Integrative and Comparative Biology, 43:166177.CrossRefGoogle ScholarPubMed
Chen, J.-Y. 2004. The Dawn of Animal World. Jiangsu Science and Technology Press, Nanjing, China, P. R., 366 p.Google Scholar
Dong, X.-P., Donoghue, P. C. J., Liu, Z., Liu, J., and Peng, F. 2005. The fossils of orsten-type preservation from Middle and Upper Cambrian in Hunan, China—three-dimensionally preserved soft-bodied fossils (Arthropods). Chinese Science Bulletin, 50:13521357.CrossRefGoogle Scholar
Dong, X.-P., Repetski, J. E., and Bergström, S. M. 2004. Conodont biostratigraphy of the Middle Cambrian through Lowermost Ordovician in Hunan, China. Acta Geologica Sinica, 78:11851206.Google Scholar
Gostling, N. J., Dong, X.-P., and Donoghue, P. C. J. 2009. Ontogeny and taphonomy: an experimental taphonomy study of the development of the brine shrimp Artemia salina . Palaeontology, 52:169186.Google Scholar
Groom, T. 1902. On Polyphyma, a new genus belonging to the Leperditiadae, from the Cambrian shales of Malvern. Quarterly Journal of the Geological Society of London, 58:8388.Google Scholar
Haug, J. T., Maas, A., and Waloszek, D. 2009. Ontogeny of two Cambrian stem crustaceans, †Goticaris longispinosa and †Cambropachycope clarksoni . Palaeontographica Abteilung Abhandlungen: Paläozoologie–Stratigraphie, 289:143.Google Scholar
Haug, J. T., Maas, A., and Waloszek, D. 2010a. Henningsmoenicaris scutula, †Sandtorpia vestrogothiensis gen. et sp. nov. and heterochronic events in early crustacean evolution. Transactions of the Royal Society of Edinburgh: Earth Sciences, 101:139.Google Scholar
Haug, J. T., Waloszek, D., and Maas, A. 2010b. High-level phylogenetic analysis using developmental sequences: the Cambrian †Martinssonia elongata, †Musacris gerdgeyeri gen. et sp. nov. and their position in early crustacean evolution. Arthropod Structure and Development, 39:154173.CrossRefGoogle ScholarPubMed
Hennig, W. 1950. Grundzüge einer Theorie der phylogenetischen Systematik. Deutscher Zentralverlag, Berlin, 370 p.Google Scholar
Hinz, , 1987. The Lower Cambrian microfauna of Comley and Rushton, Shropshire/England. Palaeontographica Abteilung Abhandlungen, 198:41100.Google Scholar
Hinz-Schallreuter, I. 1993a. Ein mittelkambrischer hesslandonider Ostrakod sowie zur morphologie und systematischen Stellung der Archaeocopa. Archiv für Geschiebekunde, 1:329350.Google Scholar
Hinz-Schallreuter, I. 1993b. Cambrian ostracodes mainly from Baltoscandia and Morocco. Archiv für Geschiebekunde, 1:385448.Google Scholar
Hinz-Schallreuter, I. 1998. Population structure, life strategies and systematics of phosphatocope ostracodes from the Middle Cambrian of Bornholm. Mitteilungen aus dem Museum für Naturkunde Berlin (Geowissenschaftliche Reihe), 1:103134.Google Scholar
Hinz-Schallreuter, I. 2000. Baltoscandian Phosphatocopes. Archiv für Geschiebekunde, 2:841896.Google Scholar
Hinz-Schallreuter, I. and Schallreuter, R. 2009. Phylogeny of Phosphatocopa. Memoirs of the Association of Australasian Palaeontologists, 37:151164.Google Scholar
Hou, X.-G., Aldridge, R. J., Bergström, J., Siveter, D. J., Siveter, D. J., and Feng, X.-H. 2004. The Cambrian Fossils of Chengjiang, China: The Flowering of Early Animal Life. Blackwell Science Ltd., Oxford, 233 p.Google Scholar
Hou, X.-G., Siveter, D. J., Williams, M., Walossek, D., and Bergström, J. 1996. Appendages of the arthropod Kunmingella from the early Cambrian of China: Its bearing on the systematic position of the Bradoriida and the fossil record of the Ostracoda. Philosophical Transactions of the Royal Society of London B, 351:11311145.Google Scholar
Hou, X.-G., Williams, M., Siveter, D. J., Siveter, D. J., Aldridge, R. J., and Sansom, R. S. 2010. Soft-part anatomy of the Early Cambrian bivalved arthropods Kunyangella and Kunmingella: significance for the phylogenetic relationships of Bradoriida. Proceedings of the Royal Society B: Biological Sciences, 277:18351841.CrossRefGoogle ScholarPubMed
Huo, S.-C., Shu, D.-G., Zhang, X.-G., Cui, Z.-L., and Tong, H.-W. 1983. Notes on Cambrian bradoriids from Shaanxi, Yunnan, Sichuan, Guizhou, Hubei and Guangdong. Journal of Northwest University, 40:5675.Google Scholar
Kozur, H. 1974. Die Bedeutung der Bradoriida als Vorläufer der postkambrischen Ostracoden. Zeitschrift der geologischen Wissenschaft Berlin, 2:823830.Google Scholar
Kummerow, E. 1931. Über die Unterschiede zwischen Phyllocariden und Ostracoden. Centralblatt für Mineralogie, Geologie und Paläontologie, Abteilung B, 1931:242257.Google Scholar
Landing, E. 1980. Late Cambrian-Early Ordovician macrofaunas and phosphatic microfaunas, St. John Group, New Brunswick. Journal of Paleontology, 54:752761.Google Scholar
Landing, E. 2007. East Laurentia 2007-a pre-meeting statement, p. 34. In Landing, E. (ed.), Ediacaran–Ordovician of East Laurentia-S. W. Ford Memorial Volume. New York State Museum Bulletin 510, 93 p.Google Scholar
Liu, J. and Dong, X.-P. 2007. Skara hunanensis, a new species of Skaracarida (Crustacea) from the Upper Cambrian (Furongian) of Hunan, South China. Progress in Natural Science, 17:934942.Google Scholar
Liu, Z. and Dong, X.-P. 2009. Vestrogothia spinata (Phosphatocopina, Crustacea), fossils of orsten-type preservation from the Upper Cambrian of Western Hunan, South China. Acta Geologica Sinica, 83:471478.Google Scholar
Liu, Z. and Dong, X.-P. 2010. The developmental trend of labrum and median eyes of orsten-type preserved Phosphatocopina (Crustacea). Science China Earth Sciences, 53:1826.Google Scholar
Lochman, C. and Hu, C.-H. 1960. Upper Cambrian faunas from the Northwest Wind River Mountains, Wyoming. Part I. Journal of Paleontology, 34:793834.Google Scholar
Maas, A., Braun, A., Dong, X.-P., Donoghue, P. C. J., Müller, K. J., Olempska, E., Repetski, J. E., Siveter, D. J., Stein, M., and Waloszek, D. 2006. The ‘orsten’—more than a Cambrian Konservat-Lagerstätte yielding exceptional preservation. Palaeoworld, 15:266282.CrossRefGoogle Scholar
Maas, A., Haug, C., Haug, J. T., Olesen, J., Zhang, X.-G., and Waloszek, D. 2009. Early crustacean evolution and the appearance of epipodites and gills. Arthropod Systematics and Phylogeny, 67:255273.Google Scholar
Maas, A. and Waloszek, D. 2005. Phosphatocopina—ostracodes-like sister group of Eucrustacea. Hydrobiologia, 538:139152.Google Scholar
Maas, A., Waloszek, D., and Müller, K. J. 2003. Morphology, ontogeny and phylogeny of the Phosphatocopina (Crustacean) from the Upper Cambrian ‘orsten’ of Sweden. Fossils and Strata, 49:1238.CrossRefGoogle Scholar
Mckenzie, K. G., Angel, M. V., Becker, G., Hinz-Schallreuter, I., Kontrovitz, M., Parker, A. R., Schallreuter, R. E. L., and Swanson, K. M. 1999. Ostracods, p. 459507. In Savazzi, E. (ed.), Functional morphology of the invertebrate skeleton. John Wiley and Sons, Chichester.Google Scholar
Mckenzie, K. G., Müller, K. J., and Gramm, M. N. 1983. Phylogeny of Ostracoda, p. 2946. In Schram, F. R. (ed.), Crustacean Phylogeny. A. A. Balkema, Rotterdam.Google Scholar
Müller, K. J. 1964. Ostracoda (Bradorina) mit phosphatischen Gehäusen aus dem Oberkambrium von Schweden. Neues Jahrbuch der Geologie und Paläontologie, Abhandlungen, 121:146.Google Scholar
Müller, K. J. 1975. Heraultia varensalensis (Crustacea) aus dem Unteren Kambrium, der älteste Fall von Geschlechtsdimorphismus. Paläontologische Zeitschrift, 49:168180.Google Scholar
Müller, K. J. 1979. Phosphatocopine ostracodes with preserved appendages from the Upper Cambrian of Sweden. Lethaia, 12:127.CrossRefGoogle Scholar
Müller, K. J. 1982. Hesslandona unisulcata sp. nov. with phosphatised appendages from Upper Cambrian “orsten” of Sweden, p. 276304. In Bate, R. H., Robinson, E. and Sheppard, L. M. (eds.), Fossil and Recent Ostracods. Ellis Horwood Limited, Chichester.Google Scholar
Müller, K. J. 1985. Exceptional preservation in calcareous nodules. Philosophical Transactions of the Royal Society of London B, 11:6773.Google Scholar
Müller, K. J. and Walossek, D. 1986a. Martinssonia elongata gen. et sp. n., a crustacean-like euarthropod from the Upper Cambrian ‘orsten’ of Sweden. Zoologica Scripta, 15:7392.Google Scholar
Müller, K. J. and Walossek, D. 1986b. Arthropod larvae from the Upper Cambrian of Sweden. Transactions of the Royal Society of Edinburgh: Earth Sciences, 77:157179.Google Scholar
Müller, K. J. and Walossek, D. 1987. Morphology, ontogeny and life habit of Agnostus pisiformis from the Upper Cambrian of Sweden. Fossils and Strata, 19:1124.Google Scholar
Müller, K. J. and Walossek, D. 1988. External morphology and larval development of the Upper Cambrian maxillopod Bredocaris admirabilis . Fossils and Strata, 23:170.CrossRefGoogle Scholar
Müller, K. J. and Walossek, D. 1991. Ein Blick durch das (orsten) Fenster in die Arthropodenwelt vor 500 Millionen Jahren. Verhandlungen der Deutschen Zoologischen Gesellschaft, 84:281294.Google Scholar
Müller, K. J., Walossek, D., and Zakharov, A. 1995. ‘Orsten’ type phosphatized soft-integument preservation and a new record from the Middle Cambrian Kuonamka Formation in Siberia. Neues Jahrbuch für Geologie und Palntologie, Abhandlungen, 91:101118.Google Scholar
Regier, J. C., Shultz, J. W., and Kambic, R. E. 2005. Pancrustaean phylogeny: Hexapods are terrestrial crustaceans and maxillopods are not monophyletic. Proceedings of the Royal Society B, 272:395401.Google Scholar
Regier, J. C., Shultz, J. W., Zwick, A., Hussey, A., Ball, B., Wetzer, R., Martin, J. W., and Cunningham, C. W. 2010. Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences. Nature, 463:10791083.CrossRefGoogle ScholarPubMed
Rushton, A. W. A. 1978. Fossils from the Middle-Upper Cambrian transition in the Nuneaton District. Palaeontology, 21:245283.Google Scholar
Scholtz, G. and Edgecombe, G. D. 2006. The evolution of arthropod heads: Reconciling morphological, developmental and palaeontological evidence. Developmental Genes and Evolution, 216:395415.Google Scholar
Shu, D.-G., Vannier, J., Luo, H.-L., Chen, L., Zhang, X.-L., and Hu, S.-X. 1999. Anatomy and lifestyle of Kunmingella (Arthropoda, Bradoriida) from the Chengjiang fossil Lagerstätte (Lower Cambrian; Southwest China). Lethaia, 32:279298.CrossRefGoogle Scholar
Siveter, D. J., Waloszek, D., and Williams, M. 2003. An Early Cambrian phosphatocopid crustacean with three-dimensionally preserved soft parts from Shropshire, England. Special Papers in Palaeontology, 70:930.Google Scholar
Siveter, D. J. and Williams, M. 1997. Cambrian Bradoriid and Phosphatocopid arthropods of North America. Special Papers in Palaeontology, 57:169.Google Scholar
Siveter, D. J., Williams, M., and Waloszek, D. 2001. A phosphatocopid crustacean with appendages from the Lower Cambrian. Science, 293:479481.Google Scholar
Skovsted, C. B., Brock, G. A., and Paterson, J. R. 2006. Bivalved arthropods from the Lower Cambrian Mernmerna Formation, Arrowie Basin, South Australia and their implications for identification of Cambrian “small shelly fossils.” Memoirs of the Association of Australasian Palaeontologists, 32:741.Google Scholar
Stein, M., Peel, J. S., Siveter, D. J., and Williams, M. 2010. Isoxys (Arthropoda) with preserved soft anatomy from the Sirius Passet Lagerstätte, Lower Cambrian of North Greenland. Lethaia, 43:258265.Google Scholar
Stein, M., Waloszek, D., and Maas, A. 2005. Oelandocaris oelandica and its significance to resolving the stem-lineage of Crustacea, p. 5571. In Koenemann, S. and Vonck, R. (eds.), Crustacea and Arthropod Relationships, Crustacean Issues 16. CRC Press, Boca Raton.Google Scholar
Stein, M., Waloszek, D., Maas, A., Haug, J. T., and Müller, K. J. 2008. The stem crustacean Oelandocaris oelandica re-visited. Acta Palaeontologica Polonica, 53:461484.Google Scholar
Swofford, D. L. 2002. PAUP*: Phylogenetic Analysis Using Parsimony (*and other methods). Sinauer Associates, Sunderland, Massachusetts.Google Scholar
Topper, T. P., Skovsted, C. B., Brock, G. A., and Paterson, J. R. 2011. The oldest bivaved arthropods from the early Cambrian of East Gondwana: Systematics, biostratigraphy and bigeography. Gondwana Research, 19:310326.Google Scholar
Vannier, J., Williams, M., Alvaro, J. J., Vizcano, D., Monceret, S., and Monceret, E. 2005. New Early Cambrian bivalved arthropods from southern France. Geological Magazine, 142:751763.Google Scholar
Wahlenberg, G. 1818. Petrificata telluris svecanae. Nova Acta Regiae Societatis Scientiatum Upsaliensis, 8:1116.Google Scholar
Walossek, D. 1999. On the Cambrian diversity of Crustacea, p. 327. In Schram, F. R. and von Vaupel Klein, J. C. (eds.), Crustaceans and the Biodiversity Crisis. Brill Academic Publishers, Leiden.Google Scholar
Walossek, D., Hinz-Schallreuter, I., Shergold, J. H., and Müller, K. J. 1993. Three-dimensional preservation of arthropod integument from the Middle Cambrian of Australia. Lethaia, 26:715.Google Scholar
Walossek, D. and Müller, K. J. 1990. Upper Cambrian stem-lineage crustaceans and their bearing upon the monophyletic origin of Crustacea and the position of Agnostus . Lethaia, 23:409427.Google Scholar
Walossek, D. and Szaniaswki, H. 1991. Cambrocaris baltica n. gen. n. sp., a possible stem-lineage crustacean from the Upper Cambrian of Poland. Lethaia, 24:363378.Google Scholar
Waloszek, D. 2003. Cambrian ‘orsten’-type arthropods and the phylogeny of Crustacea, p. 6687. In Legakis, A., Sfenthourakis, S., Polymeni, R. and Thessalou-Legaki, M. (eds.), The New Panorama of Animal Evolution. Pensoft Publishers, Sofia and Moscow.Google Scholar
Waloszek, D., Chen, J.-Y., Maas, A., and Wang, X.-Q. 2005. Early Cambrian arthropods—new insights into arthropod head and structural evolution. Arthropod Structure & Development, 34:189205.Google Scholar
Waloszek, D., Maas, A., Chen, J.-Y., and Stein, M. 2007. Evolution of cephalic feeding structures and the phylogeny of Arthropoda. Palaeogeography, Palaeoclimatology, Palaeoecology, 254:273287.Google Scholar
Williams, M. and Siveter, D. J. 1998. British Cambrian and Tremadoc bradoriid and phosphatocopid arthropods. Monograph of the Palaeontographical Society London, 152:149.Google Scholar
Williams, M., Siveter, D. J., Berg-Madsen, V., and Hinz-Schallreuter, I. 1994a. On Vestrogothia longispinosa . Stero-Atlas of Ostracod Shells, 21:2126.Google Scholar
Williams, M., Siveter, D. J., Popov, L. E., and Vannier, J. M. C. 2007. Biogeography and affinities of the bradoriid arthropods: cosmopolitan microbenthos of the Cambrian seas. Palaeogeography, Palaeoclimatology, Palaeoecology, 248:202232.Google Scholar
Williams, M., Siveter, D. J., Rushton, A. W. A., and Berg-Madsen, V. 1994b. The Upper Cambrian Bradoriid ostracode Cyclotron lapworthi is a hesslandonid. Transactions of the Royal Society of Edinburgh, Earth Sciences, 85:123130.Google Scholar
Williams, M., Siveter, D. J., Salas, M. J., Vannier, J., Popov, L. E., and Pour, M. G. 2008. The earliest ostracods: the geological evidence. Senckenbergiana Lethaea, 88:1121.Google Scholar
Xiao, S. and Knoll, A. H. 1999. Cellular preservation in the Neoproterozoic Doushantuo Lagerstätte, South China. Lethaia, 32:219240.CrossRefGoogle ScholarPubMed
Zhang, H.-Q. and Dong, X.-P. 2009. Two new species of Vestrogothia (Phosphatocopina, Crustacea) of orsten-type preservation from the Upper Cambrian in western Hunan, South China. Science in China Series D-Earth Science, 52:784796.Google Scholar
Zhang, H.-Q., Dong, X.-P., and Maas, A. 2011. Hesslandona angustata (Phosphatocopida, Crustacea) from the Upper Cambrian of western Hunan, South China, with comments on phosphatocopid phylogeny. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 259:157175.Google Scholar
Zhang, X.-G. 2007. Phosphatized Bradoriids (Arthropoda) from the Cambrian of China. Palaeontographica Abteilung A: Paläozoologie–Stratigraphie, 281:93173.Google Scholar
Zhang, X.-G. and Pratt, B. R. 1993. Early Cambrian Ostracode larvae with a univalved carapace. Science, 262:9394.Google Scholar
Zhang, X.-L., Han, J., Zhang, Z.-F., Liu, H.-Q., and Shu, D.-G. 2004. Redescription of the Chengjiang arthropod Squamacula clypeata Hou and Bergström, from the Lower Cambrian, South-west China. Palaeontology, 47:605617.Google Scholar
Zhang, X.-L. and Shu, D.-G. 2007. Soft anatomy of Sunellid arthropods from the Chengjiang Lagerstätte, Lower Cambrian of Southwest China. Journal of Paleontology, 81:14121422.Google Scholar