Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-25T19:29:18.810Z Has data issue: false hasContentIssue false

Taxonomy and biostratigraphy of the Late Albian Actinoceramus sulcatus lineage (Early Cretaceous Bivalvia, Inoceramidae)

Published online by Cambridge University Press:  20 May 2016

James S. Crampton
Affiliation:
GNS Science, PO Box 30368, Lower Hutt, New Zealand,
Andy S. Gale
Affiliation:
School of Earth and Environmental Sciences, University of Portsmouth, Burnaby Building, Burnaby Road, Portsmouth PO1 3QL, United Kingdom

Abstract

The Actinoceramus sulcatus lineage (Parkinson, 1819) (Bivalvia: Inoceramidae) is a very distinctive and abundant component of late Albian (Early Cretaceous) molluscan assemblages that is found throughout Europe, Central Asia, Japan and the Far East of Russia, southern and western North America, South Africa, and possibly India, in a range of shallow- to deep-marine facies. The lineage encompasses a wide and continuous range of morphologies that provide evidence of phyletic evolution at varying rates combined with large ecophenotypic plasticity within populations. The evolution of A. sulcatus marks the oldest appearance of well-developed radial folds and sulci within the Inoceramidae. The range of morphological variation makes formal taxonomic subdivision of the group problematic. Here we use a combination of formal successional subspecies and informal morphotypes to subdivide the lineage into the following taxa: A. sulcatus forma sulcatus, A. sulcatus forma subsulcatus (Wiltshire, 1869), A. sulcatus forma munsoni (Cragin, 1894), and A. sulcatus biometricus Crampton, 1996. Within these taxa and morphotypes, we synonymise a large number of earlier names that have been applied to variants within the lineage. Each of the forms recognized has biostratigraphic utility and we describe four new lineage biozones, in ascending order: A. concentricus parabolicus, A. sulcatus, A. sulcatus forma munsoni, and A. sulcatus biometricus biozones. The lowest occurrence of A. sulcatus is approximately coincident with the base of the upper Albian as currently defined, at least throughout most of Europe, and this datum provides a valuable tool in correlation. The nature of radial folds within the A. sulcatus lineage poses interesting but still unanswered questions regarding shell morphogenesis in bivalves and the functional significance (if any) of radial folds in the Inoceramidae.

Type
Research Article
Copyright
Copyright © The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adkins, W. S. 1928. Handbook of Texas Cretaceous fossils. University of Texas Bulletin, 2838:1303.Google Scholar
Airaghi, C. 1904. Inocerami del Veneto. Bollettino Societa Geologica Italiana, 23:178199.Google Scholar
Alexander, R. R. 2001. Functional morphology and biomechanics of articular brachiopod shells. The Paleontological Society, Papers, 7:145169.CrossRefGoogle Scholar
Ali-Zade, A. A., Aliev, G. A., Aliev, M. M., Aliiulla, K., and Khalilov, A. G. 1988. Melovaia fauna Azerbaidzhana [Cretaceous fauna of Azerbaidzhan]. Akademiia Nauk Azerbaidzhanskoi SSR, Institut Geologii, Baku. 455 p. (In Russian).Google Scholar
Aliev, M. M. 1958. Inotseramy Melovykh otlojenhii SSSR [Inoceramids in the Cretaceous deposits of the USSR], p. 123137. In Anon (ed.), Congreso Geologico Internacional XX; Seccion VII; Paleontología, Taxonomía y Evolucíon. Mexico.Google Scholar
Amedro, F. 1992. L'Albien du Bassin Anglo-Parisien: ammonites, zonation phylétique, séquences. The Albian in the Anglo-Paris Basin: ammonites, phyletic zonation, sequences. Bulletin des Centres de Recherches Exploration-Production Elf-Aquitaine, 16:187233.Google Scholar
Baraboshkin, E. J. 1999. Albian ammonite biostratigraphy of the Northern Caucasus. Neues Jahrbuch für Geologie und Paläontologie; Abhandlungen, 212:175210.CrossRefGoogle Scholar
Barnes, C., Hall Am, A., Kaljo, D., Kauffman, E. G., and Walliser, O. H. 1995. Global event stratigraphy. Pp. 319333. In Walliser, O. H. (ed.), Global Events and Event Stratigraphy in the Phanerozoic: Results of International Inderdisciplinary Cooperation in the IGCP Project 216 “Global Biological Events in Earth History.” Springer, Berlin.Google Scholar
Böse, E. 1927. Cretaceous ammonites from Texas and Northern Mexico. University of Texas Bulletin, 2748:143357.Google Scholar
Bralower, T. J., Sliter, W. V., Arthur, M. A., Leckie, R. M., Allard, D., and Schlanger, S. O. 1993. Dysoxic/Anoxic episodes in the Aptian-Albian (Early Cretaceous). Geophysical Monograph, 77:537.Google Scholar
Breheret, I.-G. 1997. L'Aptien et l'Albien de la Fosse vocontienne (des bordures au bassin); evolution de la sedimentation et enseignements sur les evenements anoxiques. Publication—Societe Geologique du Nord, 25:1614.Google Scholar
Carter, R. M. 1968. Functional studies on the Cretaceous oyster Arctostrea. Palaeontology, 11:458485.Google Scholar
Checa, A. G. and Crampton, J. S. 2002. Mechanics of sculpture formation in Magadiceramus? rangatira rangatira (Inoceramidae, Bivalvia) from the Upper Cretaceous of New Zealand. Lethaia 35:279290.CrossRefGoogle Scholar
Checa, A. G. and Jiménez-Jiménez, A. P. 1999. A mechanical model for rib formation in Ostreoidea. Abstracts, Meeting on the Biology and Evolution of the Bivalvia. Malacological Society of London, London: 12.Google Scholar
Chiplonkar, G. W. and Badve, R. M. 1976. Palaeontology of the Bagh Beds, part IV: Inoceramidae. Journal of the Palaeontological Society of India, 18 [for 1973]: 112.Google Scholar
Cox, L. R. 1969. Systematic descriptions; family Inoceramidae Giebel, 1852, p. N314N321. In Moore, R. C., Teichert, C., McCormick, L., and Williams, R. B. (eds.), Treatise on Invertebrate Paleontology. Pt. N, Mollusca 6; Bivalvia 1. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Cragin, F. W. 1894. Descriptions of invertebrate fossils from the Comanche series in Texas, Kansas and Indian Territory. Colorado College Studies, 5: 4968.Google Scholar
Crampton, J. S. 1988. Comparative taxonomy of the bivalve families Isognomonidae, Inoceramidae, and Retroceramidae. Palaeontology, 31:965996.Google Scholar
Crampton, J. S. 1996a. Biometric analysis, systematics and evolution of Albian Actinoceramus (Cretaceous Bivalvia, Inoceramidae). Institute of Geological and Nuclear Sciences Monograph, Number 15, 80 p.Google Scholar
Crampton, J. S. 1996b. Inoceramid bivalves from the Late Cretaceous of New Zealand. Institute of Geological and Nuclear Sciences Monograph, Number 14, 188 p.Google Scholar
Crampton, J. S. and Gale, A. S. 2005. A plastic boomerang: speciation and intraspecific evolution in the Cretaceous bivalve Actinoceramus. Paleobiology, 31:559577.CrossRefGoogle Scholar
Crampton, J. S., Tulloch, A. J., Wilson, G. J., Ramezani, J., and Speden, I. G. 2004. Definition, age, and correlation of the Clarence Series stages in New Zealand (late Early to early Late Cretaceous). New Zealand Journal of Geology and Geophysics, 47:119.CrossRefGoogle Scholar
D'Orbigny, A. 1846 (in 1844–1847). Paléontologie Française. Descriptions Zoologique et Geologique de tous les Animaux Mollusques et Reyonnés Fossiles de France. Terrains Crétacés. 3 (Lamellibranchia). Chez Arthus Bertrand, Paris, 807 p.Google Scholar
D'Orbigny, A. 1850. Prodrome de Paléontologie stratigraphique universelle des animaux mollusques et rayonnés. Paris. 427 p.CrossRefGoogle Scholar
Dassarma, D. C. and Sestha, N. K. 1975. Marine Cretaceous formations of the Narmada Valley (Bagh Beds), Madhya Pradesh and Gujarat. Memoirs of the Geological Survey of India; Palaeontologia Indica, New Series, 42, vii + 123 p.Google Scholar
De Queiroz, K. 1998. The general lineage concept of species, species criteria, and the process of speciation; a conceptual unification and terminological recommendations. Pp. 5775. In Howard, D. J. and Berlocher, S. H. (eds.), Endless Forms; Species and Speciation. Oxford University Press, New York.Google Scholar
Dhondt, A. V. and Dieni, I. 1988. Early Cretaceous bivalves of eastern Sardinia. Memorie di Scienze Geologiche—Universita di Padova, 40:197.Google Scholar
Dimitrova, N. 1974. Fosilite na Bulgariia; IVb; Dolna Kreda (okhiuvi i midi) [Fossils of Bulgaria; IVb; Lower Cretaceous (Gastropods and Bivalves)]. Bulgarskata Akademiia na Naukite, Sofia, 258 p. (In Bulgarian).Google Scholar
Downes, W. 1882. The zones of the Blackdown Beds, and their correlation with those at Haldon, with a list of the fossils. Quarterly Journal of the Geological Society of London, 38:7592.CrossRefGoogle Scholar
Drushchits, V. V. and Kudryavtsev, M. P. 1960. Atlas of the Lower Cretaceous fauna of the Northern Caucasus and Crimea. Vsesoyuznyi Nauchno-Issledovatel'skii Institut Prirodnykh Gazov (VNIIGaz), Moscow, 701 p. (In Russian).Google Scholar
Erbacher, J. and Thurow, J. 1998. Mid-Cretaceous radiolarian zonation for the North Atlantic: an example of oceanographically controlled evolutionary processes in the marine biosphere?, p. 7182. In Cramp, A., MacLeod, C. J., Lee, S. V., and Jones, E. J. W. (eds.), Geological Evolution of Ocean Basins: Results from the Ocean Drilling Program. Geological Society of London, London.Google Scholar
Fenner, J. 2001. The Kirchrode I and II boreholes: Technical details and evidence on tectonics, and the palaeoceanographic development during the Albian. Palaeogeography, Palaeoclimatology, Palaeoecology, 174:3365.CrossRefGoogle Scholar
Foote, M. 1996. On the probability of ancestors in the fossil record. Paleobiology, 22:141151.CrossRefGoogle Scholar
Gale, A. S., Kennedy, W. J., Burnett, J. A., Caron, M., and Kidd, B. E. 1996. The Late Albian to Early Cenomanian succession at Mont Risou near Rosans (Drôme, SE France): an integrated study (ammonites, inoceramids, planktonic foraminifera, nannofossils, oxygen and carbon isotopes). Cretaceous Research, 17:515606.CrossRefGoogle Scholar
Gallois, R. W. 1984. The Late Jurassic to mid Cretaceous rocks of Norfolk. Bulletin of the Geological Society of Norfolk, 34:364.Google Scholar
Gallois, R. W. 1988. Geology of the country around Ely. Memoir of the British Geological Survey (England and Wales), Sheet, 173:1116.Google Scholar
Gallois, R. W. and Morter, A. A. 1982. The stratigraphy of the Gault of East Anglia. Proceedings of the Geologists Association, 93:351368.CrossRefGoogle Scholar
Goldfuss, G. A. 1836 (in 1834–1840).Petrefacta Germaniae tam ea, quae in Museo Universitatis Regiae Borussicae Fridericiae Wilhelmiae Rhenanae servantur quam alia quaecunque in Museis Hoeninghusiano, Muensteriano allisque extant, iconibus et descriptionibus illustrata. Arnz and Co., Düsseldorf, volume 2, pt. 5:69140.Google Scholar
Gould, S. J. and Lewontin, R. C. 1979. The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proceedings of the Royal Society of London, B, 205:581598.Google Scholar
Haines, A. J. and Crampton, J. S. 2000. Improvements to the method of Fourier shape analysis as applied in morphometric studies. Palaeontology, 43:765783.CrossRefGoogle Scholar
Hardenbol, J., Thierry, J., Farley, M. B., Jacquin, T., Graciansky, P.-C. D., and Vail, P. R. 1998. Mesozoic and Cenozoic sequence chronostratigraphic framework of European basins, p. 313 + 8 charts. In Graciansky, P.-C. D., Hardenbol, J., Jacquin, T., and Vail, P. R. (eds.), Mesozoic and Cenozoic Sequence Stratigraphy of European Basins. SEPM, Tulsa, Oklahoma.Google Scholar
Harries, P. J. and Crampton, J. S. 1998. The inoceramids. American Paleontologist, 6:26.Google Scholar
Harries, P. J., Kauffman, E. G., and Crampton, J. S. (Redactors). 1996. Lower Turonian Euramerican Inoceramidae: A morphologic, taxonomic, and biostratigraphic overview. A report from the First Workshop on Early Turonian Inoceramids (Oct. 5–8, 1992) in Hamburg, Germany; organized by Heinz Hilbrecht and Peter J. Harries. Mitteilungen aus dem Geologisch-Paläontologischen Institut der Universität Hamburg, 77:641671.Google Scholar
Henderson, R. A. and Kennedy, W. J. 2002. Occurrence of the ammonite Goodhallites goodhalli (J. Sowerby) in the Eromanga Basin, Queensland: an index species for the late Albian (Cretaceous). Alcheringa, 26:233247.CrossRefGoogle Scholar
Hughes, N. C. and Labandeira, C. C. 1995. The stability of species in taxonomy. Paleobiology, 21:401403.CrossRefGoogle Scholar
Ianin, B. T. 1972. Stratigraphic distribution of inocerams in Lower Cretaceous deposits in the southern areas of the USSR, p. 7590. In Pergament, M. A. (ed.), Trudy Vsesoiuznogo Kollokviuma po Inotseramam [Transactions of the All-Union Colloquium on Inocerams]. Academia Nauk SSSR, Geologicheskii Institut, Moscow, (In Russian).Google Scholar
Imlay, R. W. 1937. Part IV. Geology of the Sierra de Cruillas Tamaulipas. University of Michigan Studies, Scientific Series, 12:207241.Google Scholar
Immenhauser, A. and Scott, R. W. 1999. Global correlation of middle Cretaceous sea-level events. Geology, 27:551554.2.3.CO;2>CrossRefGoogle Scholar
Jacquin, T., Rusciadelli, G., Amedro, F., Degraciansky, P.-C., and Magniez-Jannin, F. 1998. The North Atlantic cycle: An overview of 2nd order transgressive/regressive facies cycles in the Lower Cretaceous of Western Europe, p. 397409. In Graciansky, P.-C. D., Hardenboi, J., Jacquin, T., and Vail, P. R. (eds.), Mesozoic and Cenozoic Sequence Stratigraphy of European Basins. SEPM Special Publication, volume 60, Tulsa, Oklahoma.Google Scholar
Jenkyns, H. C., Forster, A., Schouten, S., and Sinninghe Damste, J. S. 2004. High temperatures in the Late Cretaceous Arctic Ocean. Nature, 432: 888892.CrossRefGoogle ScholarPubMed
Johnson, A. L. A. 1984. The palaeobiology of the bivalve families Pectinidae and Propeamussiidae in the Jurassic of Europe. Zitteliana; Abhandlungen der Bayerischen Staatssammlung für Paläontologie und historische Geologie, 11:3235.Google Scholar
Jones, D. L. 1960. Lower Cretaceous (Albian) fossils from southwestern Oregon and their paleogeographic significance. Journal of Paleontology, 34: 152160.Google Scholar
Kauffman, E. G. 1978. British middle Cretaceous inoceramid biostratigraphy, p. IV.1IV.12. In Reyment, R. A. and Thomel, G. (eds.), Evenements de la partie moyenne du Cretace; Uppsala 1975-Nice 1976. Muséum d'Histoire Naturelle, Nice.Google Scholar
Kauffman, E. G. and Hart, M. B. 1995. Cretaceous bio-events, p. 285312. In Walliser, O. H. (ed.), Global Events and Event Stratigraphy in the Phanerozoic: Results of International Interdisciplinary Cooperation in the IGCP Project 216 “Global Biological Events in Earth History.” Springer, Berlin.Google Scholar
Kauffman, E. G., Meyer, C. A., Villamil, T., and Harries, P. J. 1992. Pseudoplankton: Hitch-hikers through time or stuck in the mud? Paleontological Society Special Publication, 6:157.CrossRefGoogle Scholar
Kennedy, W. J., Gale, A. S., Hancock, J. M., Crampton, J. S., and Cobban, W. A. 1999. Ammonites and inoceramid bivalves from close to the middle-upper Albian boundary around Fort Worth, Texas. Journal of Paleontology, 73:11011125.CrossRefGoogle Scholar
Khalilov, A. G. 1959. Lower Cretaceous inoceramids from the eastern Minor Caucasus. Izvestiia Akademii Nauk Azerbaidzhanskoi SSR, Seriia Geologo-Geograficheskikh Nauk, 1959:2737. (In Russian).Google Scholar
Knight, R. I. 1997. Benthic paleoecology of the Gault Clay Formation (Mid- and basal Upper Albian) of the western Anglo-Paris Basin. Proceedings of the Geologists Association, 108:81103.CrossRefGoogle Scholar
Knight, R. I. and Morris, N. J. 1996. Inoceramid larval planktotrophy: evidence from the Gault Formation (middle and basal upper Albian), Folkestone, Kent. Palaeontology, 39:10271036.Google Scholar
Lake, R. D., Young, B., Wood, C. J., and Mortimore, R. N. 1987. Geology of the country around Lewes. Memoir of the British Geological Survey (England and Wales), Sheet, 319:1117.Google Scholar
Leckie, R. M., Bralower, T. J., and Cashman, R. 2002. Oceanic anoxic events and plankton evolution: biotic response to tectonic forcing during the mid-Cretaceous. Paleoceanography, 17:13.1–13.29.CrossRefGoogle Scholar
Lehmann, J., Friedrich, O., Luppold, F. W., Weiß, W., and Erbacher, J. 2007. Ammonites and associated macrofauna from around the Middle/Upper Albian boundary of the Hannover-Lahe core, northern Germany. Cretaceous Research, 28:719742.CrossRefGoogle Scholar
Lutz, R. A. and Jablonski, D. 1978 Larval bivalve shell morphometry: A new paleoclimatic tool? Science, 202:5153.CrossRefGoogle ScholarPubMed
Mantell, G. 1822. The fossils of the South Downs; or illustrations of the geology of Sussex. Lupton Reife, London, xiv + 327 p.Google Scholar
Mantell, G. 1833. The geology of the south-east of England. Longman, Rees, Orme, Brown, Green, and Longman, London, 415 p.CrossRefGoogle Scholar
Matsumoto, T. and Harada, M. 1964. Cretaceous stratigraphy of the Yubari Dome, Hokkaido. Memoirs of the Faculty of Science, Kyushu University, Series D, Geology, 15:79115.CrossRefGoogle Scholar
Mayr, E. 1982. Of what use are subspecies? The Auk, 99:593595.Google Scholar
Meek, F. B. 1864. Check list of the invertebrate fossils of North America. Cretaceous and Jurassic. Smithsonian Miscellaneous Collections, 177:140.Google Scholar
Mitchell, S. F. 1995. Lithostratigraphy and biostratigraphy of the Hunstanton Formation (Red Chalk, Cretaceous) succession at Speeton, North Yorkshire, England. Proceedings of the Yorkshire Geological Society, 50:285303.CrossRefGoogle Scholar
Mongin, D. 1979. Observations paleoecologiques et biogeographiques sur les gasteropodes et lamellibranches du stratotype de l'Albien. Les Stratotypes Francais, 5:407429.Google Scholar
Mordvilko, T. A., Bodylevskii, V. I., and Lyppov, N. P. 1949. Atlas rukovodiashchih form iskopaemykh faun SSSR; tom X; nizhnii otdel Melovoi Sistemy. Klass Lamellibranchiata [Atlas of guide forms of the fossil fauna of the USSR; volume X; lower strata of the Cretaceous System. Class Lamellibranchiata]. Gosudarstvennoe Izdatel'stvo Geologicheskoi Literatury, Moscow, 315 p.Google Scholar
Nagao, T. and Matsumoto, T. 1940. A monograph of the Cretaceous Inoceramus of Japan. Part II. Journal of the Faculty of Science, Hokkaido Imperial University, Series IV, 6:164.Google Scholar
Noda, M. 1983. Notes on the so-called Inoceramus japonicus (Bivalvia) from the Upper Cretaceous of Japan. Transactions and Proceedings of the Palaeontological Society of Japan, New Series, 132:191219.Google Scholar
Owen, H. G. 1971. Middle Albian stratigraphy in the Anglo-Paris Basin. Bulletin of the British Museum (Natural History), Geology (Supplement), 8:1164.CrossRefGoogle Scholar
Owen, H. G. 1975. The stratigraphy of the Gault and Upper Greensand of the Weald. Proceedings of the Geologists Association, 86:475498.CrossRefGoogle Scholar
Owen, H. G. 1984. The Albian Stage: European province chronology and ammonite zonation. Cretaceous Research, 5:329344.CrossRefGoogle Scholar
Owen, H. G. 1996. The Upper Gault and Upper Greensand of the M23/M25/M26 motorway system and adjacent sections, Surrey and Kent. Proceedings of the Geologists Association, 107:167188.CrossRefGoogle Scholar
Owen, H. G. 1999. Correlation of Albian European and Tethyan ammonite zonations and the boundaries of the Albian Stage and substages: some comments. Scripta Geologica, Special Issues, 3:129149.Google Scholar
Parkinson, J. 1819. Remarks on the fossils collected by Mr. Phillips near Dover and Folkstone. Transactions of the Geological Society of London, 5(1):5259.Google Scholar
Passendorfer, E. 1930. étude stratigraphique ed paléontologique du Crétace de la série hauttatrique dans les Tatras. Travaux du Service Géologique de Pologne, 2:511677.Google Scholar
Pictet, F.-J. and Campiche, G. 1869 (in 1868–1871). Description des Fossiles du Terrain Crétacé des Environs de Sainte-Croix. H. Georg, Genève, 352 p.Google Scholar
Pictet, F.-J. and Roux, W. 1853 (in 1847–1853). Description des Mollusques Fossiles qui se Trouvent dans les Grès Verts des Environs de Genève. Jules-Gme Fick, Genève, 458 p.Google Scholar
Pokhialainen, V. P. 1985. The structure of inoceram populations, p. 91103. In Pokhialainen, V. P. (ed.), Dvustvorchatye i golovonogie molliuski Mezozoia Severo-Vostoka SSSR [Bivalve and cephalopod molluscs of the Mesozoic of the north-eastern USSR]. Dal'nevostochnyi Nauchnyi Tsentr, Severo-Vostochnyi Kompleksnyi Nauchno-Issledovatel'skii Institut, Magadan, (In Russian).Google Scholar
Premoli Silva, I. and Sliter, W. V. 1999. Cretaceous paleoceanography: Evidence from planktonic foraminiferal evolution. Geological Society of America, Special Paper, 332:301328.Google Scholar
Prokoph, A. and Thurow, J. 2000. Diachronous pattern of Milankovitch cyclicity in late Albian pelagic marlstones of the North German Basin. Sedimentary Geology, 134:287303.CrossRefGoogle Scholar
Rennie, J. V. L. 1936. Lower Cretaceous Lamellibranchia from Northern Zululand. Annals of the South African Museum, Cape Town, 31:277391.Google Scholar
Robaszynski, F. and Amedro, F. 1986. The Cretaceous of the Boulonnais (France) and a comparison with the Cretaceous of Kent (United Kingdom). Proceedings of the Geologists' Association, 97:171208.CrossRefGoogle Scholar
Robaszynski, F., Amedro, F., Foucher, J. C., Gaspard, D., Magniez-Jannin, F., Manivit, H., and Sornay, J. 1980. Synthèse biostratigraphique de l'Aptien au Santonien du Boulonnais à partir de sept groups paléontologiques: Foraminifères, nannoplankton, Dinoflagellés et macrofaunes. Revue de Micropaleontologie, 22:195321.Google Scholar
Rudwick, M. J. S. 1964. The function of zigzag deflexions in the commissures of fossil brachiopods. Palaeontology, 7:135171.Google Scholar
Salvador, A. 1994. International Stratigraphic Guide; a Guide to Stratigraphic Classification, Terminology, and Procedure (2nd ed.). The International Union of Geological Sciences and The Geological Society of America, Boulder, Colorado, 214 p.Google Scholar
Savazzi, E. 1990. Biological aspects of theoretical shell morphology. Lethaia, 23:195212.CrossRefGoogle Scholar
Savel'Ev, A. A. 1962. Albian inocerams of Mangyshlak. Trudy Vsesoiuznogo Neftianogo Nauchno-Issledovatel'skogo Geologo-Razvedochnogo Instituta (VNIGRI) [Leningrad], 196:219254.Google Scholar
Schlüter, C. 1877. Kreide-Bivalven. Zur Gattung Inoceramus. Palaeontographica, 24:251288.Google Scholar
Schouten, S., Hopmans, E. C., Forster, A., Van Breugel, Y., Kuypers, M. M. M., and Sinninghe Damsté, J. S. 2003. Extremely high sea-surface temperatures at low latitudes during the middle Cretaceous as revealed by archaeal membrane lipids. Geology, 31:10691072.CrossRefGoogle Scholar
Seilacher, A. 1982. Ammonite shells as habitats in the Posidonia Shales of Holzmaden—floats or benthic islands? Neues Jahrbuch für Geologie und Paläontologie; Monatshefte, 1982(2):98114.CrossRefGoogle Scholar
Seilacher, A. 1984. Constructional morphology of bivalves: Evolutionary pathways in primary versus secondary soft-bottom dwellers. Palaeontology, 27:207237.Google Scholar
Seilacher, A. 1985. Bivalve morphology and function. University of Tennessee Department of Geological Sciences Studies in Geology, 13:88101.Google Scholar
Simpson, G. G. 1961. Principles of Animal Taxonomy. Columbia University Press, New York. xii + 247 p.CrossRefGoogle Scholar
Sowerby, J. 1814. In article 6: Proceedings of philosophical societies—Linnaean Society. Annals of Philosophy, 4:448.Google Scholar
Sowerby, J. 1821 (in 1818–1821). The Mineral Conchology of Great Britain; or Coloured Figures and Descriptions of those Testaceous Animals or Shells, which have been Preserved at Various Times and Depths in the Earth, volume III. The author, London, 184 p.Google Scholar
Sowerby, J. and Sowerby, J. D. C. 1828 (in 1826–1829). The Mineral Conchology of Great Britain or Coloured Figures and Descriptions of those Testaceous Animals or Shells which have been Preserved at Various Times and Depths in the Earth, volume VI, The author, London, 250 p.Google Scholar
Strasser, A., Caron, M., and Gjermeni, M. 2001. The Aptian, Albian and Cenomanian of Roter Sattel, Romandes Prealps, Switzerland: A high-resolution record of oceanographic changes. Cretaceous Research, 22:173199.CrossRefGoogle Scholar
Tanabe, K. 1973. Evolution and mode of life of Inoceramus (Sphenoceramus) naumanni Yokoyama emend., an Upper Cretaceous bivalve. Transactions and Proceedings of the Palaeontological Society of Japan, New Series, 92:163184.Google Scholar
Tateo, F., Morandi, N., Nicolai, A., Ripepe, M., Coccioni, R., Galeotti, S., and Baudin, F. 2000. Orbital control on pelagic clay sedimentology: the case of the late Albian “Amadeus Segment” (central Italy). Bulletin de la Société géologique de France, 171:217228.CrossRefGoogle Scholar
Taylor, J. D. and Glover, E. A. 2000. Functional anatomy, chemosymbiosis and evolution of the Lucinidae, p. 207225. In Harper, E. M., Taylor, J. D., and Crame, J. A. (eds.), Evolutionary Biology of the Bivalvia. The Geological Society, London.Google Scholar
Ubukata, T. and Nakagawa, Y. 2000. Modelling various sculptures in the Cretaceous bivalve Inoceramus hobetsensis. Lethaia, 33:313329.CrossRefGoogle Scholar
Underwood, C. J. and Mitchell, S. F. 1999. Mid-Cretaceous onlap history of the Market Weighton structural high, northeast England. Geological Magazine, 136:681696.CrossRefGoogle Scholar
Waller, T. R. 1986. A new genus and species of scallop (Bivalvia: Pectinidae) from off Somalia, and the definition of a new tribe Decatopectinini. The Nautilus, 100:3946.Google Scholar
Whiteaves, J. F. 1884. Mesozoic fossils; Volume 1; pt. III.—On the Fossils of the Coal-Bearing Deposits of the Queen Charlotte Islands Collected by Dr. G. M. Dawson in 1858. Geological Survey of Canada, Montreal: 191262.CrossRefGoogle Scholar
Wiedmann, J. 1979. Itineraire géologique à travers le Crétacé Moyen des Chaînes Vascogotiques et Celtibériques (Espagne du Nord). Cuadernos de Geología Ibérica, 5:127240.Google Scholar
Wiedmann, J. and Kauffman, E. G. 1978. Mid-Cretaceous biostratigraphy of northern Spain. Annales du Muséum d'Histoire Naturelle de Nice, 4 (for 1976):3.13.34.Google Scholar
Wiley, E. O. 1978. The evolutionary species concept reconsidered. Systematic Zoology, 27:1726.CrossRefGoogle Scholar
Wilson, P. A. and Norris, R. D. 2001. Warm tropical ocean surface and global anoxia during the mid-Cretaceous. Nature, 412:425429.CrossRefGoogle ScholarPubMed
Wiltshire, T. 1869. On the Red Chalk of Hunstanton. Quarterly Journal of the Geological Society of London, 25:185192.CrossRefGoogle Scholar
Wollemann, A. 1909. Die Bivalven und Gastropoden des norddeutschen Gaults (Aptiens und Albiens). Jahrbuch der Königlich Preussischen Geologischen Landesanstalt und Bergakademie, 27:259300.Google Scholar
Woods, H. 1911 (in 1904–1913). A monograph of the Cretaceous Lamellibranchia of England. Vol. II. Monograph Palaeontological Society 2(1–9), 473 p.Google Scholar
Woods, H. 1912. The evolution of Inoceramus in the Cretaceous Period. Quarterly journal of the Geological Society of London, 68:120.CrossRefGoogle Scholar
Woods, M. A., Wilkinson, I. P., Dunn, J., and Riding, J. B. 2001. The biostratigraphy of the Gault and Upper Greensand formations (Middle and Upper Albian) in the BGS Selborne boreholes, Hampshire. Proceedings of the Geologists Association, 112:211222.CrossRefGoogle Scholar
Yoshida, K. 1998. Formation of plications in the Miocene bivalve Mytilus (Plicatomytilus) ksakurai as a consequence of architectural constraint. Paleontological Research, 2:224238.Google Scholar
Zittel, K. A. 1887. Traite De Paleontologie. Tome II, Paleozoologie. Partie I, Mollusca Et Arthropoda. Octave Doin, Paris, 897 p.Google Scholar
Zonova, T. D. 1978. New discovery of the inoceram group Inoceramus sulcatus from the Far East, p. 7881. In Ablaev, A. G., Poiarkov, B. V., and Poiarkova, Z. N. (eds.), Biostratigrafiia Iura dal'nego Vostoka (Fanerozoi) [Biostratigraphy of the southern Far East (Phanerozoic)]. Dal'nevostochnyi Nauchnyi Tsentr, Dal'nevostochnyi Geologicheskii Institut, Vladivostok. (In Russian).Google Scholar
Zonova, T. D. 2004. Inotseramidy Al'b–Senomana Penzhinskoi depressii i Penzhinskogo kriazha (Severo-Vostok Rossii) [Inoceramids of the Albian-Cenomanian succession of the Penzha depression and Penzha ridge (Far East Russia)]. Biulleten' Paleontologicheskogo i Litologicheskogo Kollektsionnogo Fonda VNIGRI, 1:1141. (In Russian).Google Scholar