Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-30T16:13:38.812Z Has data issue: false hasContentIssue false

Paleoecology and taxonomy of Schoenaster carterensis, a new encrinasterid ophiuroid species from the Upper Mississippian (Chesterian) Slade Formation of northeastern Kentucky, USA

Published online by Cambridge University Press:  09 March 2020

Ann W. Harris
Affiliation:
University of Kentucky, Department of Earth and Environmental Sciences, 101 Slone Building, Lexington, Kentucky40506, USA
Frank R. Ettensohn
Affiliation:
University of Kentucky, Department of Earth and Environmental Sciences, 101 Slone Building, Lexington, Kentucky40506, USA
Jill E. Carnahan-Jarvis
Affiliation:
Eastern Kentucky University, Department of Mathematics, Statistics, and Computer Science, 521 Lancaster Avenue, Richmond, Kentucky40475, USA

Abstract

Schoenaster carterensis new species, is an asteroid-like ophiuroid (Echinodermata) from Upper Mississippian (Chesterian) shallow-water carbonates in the Ramey Creek Member of the Slade Formation in northeastern Kentucky. First described in the 1860s from Lower and Middle Mississippian rocks, Schoenaster Meek and Worthen, 1860 is not a well-known fossil genus, but the 39 specimens in this collection permitted further definition of the genus and extended its range by ca. 17 Ma into Late Mississippian (Chesterian) time. The number of specimens also permitted differentiation of growth stages based on average arm length and showed that arm length, disk perimeter, and disk area are interrelated in statistically significant ways. Although replaced by chert, the specimens are nearly intact due to rapid burial as rare constituents in habitat communities distributed among four once-contiguous habitats, including shoal, shoal margin, transitional, and basinal. Most of the ophiuroids were concentrated on firm grounds or hardgrounds in shoal and transitional environments, concentrations that probably reflect substratum stability and the ability to support the ophiuroid's generalist feeding strategy. Many fossil ophiuroid species are known from only a few specimens, severely limiting interpretations about their detailed taxonomy, individual variation, and ecology. In contrast, the greater number of specimens and extensive knowledge of geologic occurrence in this study permitted detailed interpretations regarding the taxonomic, intraspecific, and ecologic attributes of this species, which might be useful in the study of other fossil ophiuroids.

UUID: http://www.zoobank.org/ffd945d8-63ac-4c38-a2d3-8647558dbbf0

Type
Articles
Copyright
Copyright © 2020, The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aigner, T., 1982, Calcareous tempestites: Storm-dominated stratification in upper Muschelkalk limestones (Middle Trias, SW-Germany), in Einsele, G., and Seilacher, A., eds., Cyclic and event stratification: Berlin, Springer-Verlag, p. 180198.CrossRefGoogle Scholar
Allison, P.A., 1990, Variation in rates of decay and disarticulation of Echinodermata: Implications for the application of actualistic data: Palaios, v. 5, p. 432440.CrossRefGoogle Scholar
Arkle, K.M., and Miller, A.I., 2018, Evidence for stratigraphy in molluscan death assemblages preserved in seagrass beds: St. Croix, U.S. Virgin Islands: Paleobiology, v. 44, p. 155170, doi:10.1017/pab.2017.26.CrossRefGoogle Scholar
Ballard, W.W., Bluemie, J.P., and Gerhard, L.C., 1983, Correlation of stratigraphic units of North America (COSUNA) Project: Northern Rockies/Williston Basin region: Tulsa, Oklahoma, American Association of Petroleum Geologists Correlation Chart Series, 1 sheet.Google Scholar
Blake, D.B., and Elliott, D.R., 2003, Ossicular homologies, systematics, and phylogenetic implications of certain North American Carboniferous asteroids (Echinodermata): Journal of Paleontology, v. 77, p. 476489, doi:10.1017/S002233600004419X.CrossRefGoogle Scholar
Blake, D.B., Zamora, S., and García-Alcalde, J.L., 2015, A new Devonian asteroid-like ophiuroid from Spain: Geologica Acta, v. 13, p. 335343, doi:10.1344/GeologiaActa2015.13.4.6.Google Scholar
Blake, D.B., Donovan, S.K., and Harper, D.A.T., 2017, A new Silurian ophiuroid from the west of Ireland: Irish Journal of Earth Sciences, v. 35, p. 5766, doi:10.3318/ijes.2017.35.57.CrossRefGoogle Scholar
Boggs, S. Jr., 2006, Principles of Sedimentology and Stratigraphy (4th edition): Upper Saddle River, New Jersey, Pearson Prentice Hall, 662 p.Google Scholar
Bottjer, D.J., and Ausich, W.I., 1986, Phanerozoic development of tiering in soft substrata suspension-feeding communities: Paleobiology, v. 12, p. 400420.CrossRefGoogle Scholar
Boucot, A.J., Xu, C., and Scotese, C.R., 2013, Phanerozoic paleoclimate: An atlas of lithologic indicators of climate: SEPM Concepts in Sedimentology and Paleontology no. 11, 348 p.Google Scholar
Brett, C.E., Moffat, H.A., and Taylor, W.L., 1997, Echinoderm taphonomy, taphofacies, and Lagerstätten, in Waters, J.A., and Maples, C.G., eds., Geobiology of Echinoderms: Paleontological Society Papers, v. 3, p. 147190.Google Scholar
Bruguière, J.G., 1791, Tableau Encyclopédique et Méthodique de Trois Règnes de la Nature, Volume 7, L'Helmenthologie: Paris, Panckoucke, viii + 132 p.CrossRefGoogle Scholar
Burdick, D.W., and Stimple, H.L., 1973, New Late Mississippian crinoids from northern Arkansas: Journal of Paleontology, vol. 47, no. 2, p. 231243.Google Scholar
Butts, S.H., 2014, Silicification, in Laflamme, M., Schiffbauer, J.D., and Darroch, S.A.F., eds., Reading and Writing of the Fossil Record: Preservational Pathways to Exceptional Fossilization: Paleontological Society Papers, v. 20, p. 1533.Google Scholar
Butts, S.H., and Briggs, D.E.G., 2011, Silicification through time, in Allison, P., and Bottjer, D.J., eds., Taphonomy: Aims and Scope: Dordrecht, The Netherlands, Springer, Topics in Geobiology Book Series, v. 32, p. 411434.CrossRefGoogle Scholar
Chesnut, D.R. Jr., and Ettensohn, F.R., 1988, Hombergian (Chesterian) echinoderm paleontology and paleoecology, south-central Kentucky: Bulletins of American Paleontology, v. 95, no. 330, 102 p.Google Scholar
Davydov, V.I., Korn, D., and Schmitz, M.D., 2012, The Carboniferous Period, in Gradstein, F.M., Ogg, J.G., Schmitz, M.D., and Ogg, G.M., eds., The Geologic Time Scale, Volume 2: Amsterdam, Elsevier, p. 603651.CrossRefGoogle Scholar
Dean, J., 1999, What makes an ophiuroid? A morphological study of the problematic Ordovician stelleroid Stenaster and the palaeobiology of the earliest asteroids and ophiuroids: Zoological Journal of the Linnean Society, v. 126, p. 225250.CrossRefGoogle Scholar
Easton, W.H., 1943, The fauna of the Pitkin Formation of Arkansas: Journal of Paleontology, v. 17, p. 125154.Google Scholar
Elliott, D.R., 2008, Sponge predation by a Mississippian asteroid and feeding behaviors, food selection, and feeding habits of fossil asteroids: Transactions of the Missouri Academy of Science, v. 42, p. 1417, doi:10.30956/0544-540X-42.2008.14.CrossRefGoogle Scholar
Ettensohn, F.R., 1975, Stratigraphic and paleoenvironmental aspects of Upper Mississippian rocks (upper Newman Group), east-central Kentucky [Ph.D. thesis]: Urbana, University of Illinois, 320 p.Google Scholar
Ettensohn, F.R., 1977, Effects of synsedimentary tectonic activity on the upper Newman Limestone and Pennington Formation, in Dever, G.R. Jr., Hoge, H.P., Hester, N.C., and Ettensohn, F.R., eds., Stratigraphic Evidence for Late Paleozoic Tectonism in Northeastern Kentucky—Field Trip Guidebook, Eastern Section, American Association of Petroleum Geologists: Lexington, Kentucky Geological Survey, 80 p.Google Scholar
Ettensohn, F.R., 1980, An alternative to the Barrier-Shoreline model for deposition of Mississippian and Pennsylvanian rocks in northeastern Kentucky: Geological Society of America Bulletin, v. 91, p. 130135 (pt. 2, v. 91, p. 934–1056).2.0.CO;2>CrossRefGoogle Scholar
Ettensohn, F.R., 1981, Mississippian-Pennsylvanian boundary in north-eastern Kentucky, in Roberts, T.G., ed., GSA Cincinnati 1981, Field trip Guidebooks, Volume 1—Stratigraphy, Sedimentology: Falls Church, Virginia, American Geological Institute, p. 195257.Google Scholar
Ettensohn, F.R., 1986, The Mississippian-Pennsylvanian transition along Interstate 64, northeastern Kentucky, in Neathery, T.L., ed., Southeastern Section of the Geological Society of America: Geological Society of America Centennial Field Guide, v. 6, p. 3741.Google Scholar
Ettensohn, F.R., 1993, Possible flexural controls on the origins of extensive, ooid-rich, carbonate environments in the Mississippian of the United States, in Zuppan, C.W., and Keith, B., eds., Mississippian Oolites and Modern Analogs: AAPG Studies in Geology, v. 35, p. 1330.Google Scholar
Ettensohn, F.R., 2009, The Mississippian of the Appalachian Basin, in Greb, S.F., and Chesnut, D.R., Jr., eds., Carboniferous Geology and Biostratigraphy of the Appalachian Basin: Kentucky Geological Survey, series 12, Special Publication 10, 101 p.Google Scholar
Ettensohn, F.R., Rice, C.L., Dever, G.R. Jr., and Chesnut, D.R., 1984, Slade and Paragon formations: New stratigraphic nomenclature for Mississippian rocks along the Cumberland Escarpment in Kentucky: United States Geological Survey Bulletin 1065-B, 37 p.Google Scholar
Ettensohn, F.R., Johnson, W., Stewart, A., Solis, M., and White, T., 2004, Stratigraphy and depositional environments of the Middle and Upper Mississippian Slade and Paragon formations, Bighill exposure, east-central Kentucky, in Smath, R.A., ed., The Bighill Exposure and a Little Beyond, 2004 Joint Field Trip: Lexington, Kentucky Society of Professional Geologists and Kentucky Section of the American Institute of Professional Geologists, p. 1843.Google Scholar
Fagerstrom, J.A., 1964, Fossil communities in paleoecology: Their recognition and significance: Geological Society of America Bulletin, v. 75, p. 11971216.CrossRefGoogle Scholar
Fechter, H., 1972, The brittle stars, in Grizimek, B., ed., Grizimek's Animal Life Encyclopedia, Volume 3: New York, Van Norstrand Reinhold, p. 389409.Google Scholar
Forbes, E., 1841, A History of British Starfishes, and Other Animals of the Class Echinodermata: London, John Van Voorst, 267 p.Google Scholar
Franzblau, A.N., 1958, A Primer of Statistics for Non-statisticians: New York, Harcourt, Brace and World, 150 p.Google Scholar
Fursich, F.T., 1979, Genesis, environments and ecology of Jurassic hardgrounds: Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, v. 156, p. 163.Google Scholar
Glass, A., 2006a, The brittle star fauna of the Hunsrück Slate and a phylogeny of the Paleozoic Ophiuroidea [Ph.D. thesis]: Urbana-Champaign, University of Illinois, 620 p.Google Scholar
Glass, A., 2006b, Pyritized tube-feet in a protasterid ophiuroid from the Upper Ordovician of Kentucky, U.S.A.: Acta Palaeontologica Polonica, v. 51, p. 171184.Google Scholar
Glass, A., 2006c, New observations on some poorly known protasterid ophiuroids from the Lower Devonian Hunsrück Slate of Germany: Paläontologische Zeitschrift, v. 80, p. 6887, doi:10.1007/BF02988399.CrossRefGoogle Scholar
Glass, A., and Blake, D.B., 2002, Soft-tissue preservation in protasterid ophiuroids (Echinodermata) from the Kope Formation (Cincinnatian, Upper Ordovician) of north-western Kentucky and the Hunsrück Slate (Emsian, Lower Devonian) of Germany: Geological Society of America Abstracts with Programs, v. 34, p. 36.Google Scholar
Glass, A., and Blake, D.B., 2004, Preservation of tube feet in an ophiuroid (Echinodermata) from the Lower Devonian Hunsrück Slate of Germany and a redescription of Bundenbachia beneckei and Palaeophiomyxa grandis: Paläontologische Zeitschrift, v. 78, p. 7395, doi:10.1007/VBF03009131.CrossRefGoogle Scholar
Gray, J.E., 1840, A Synopsis of the Contents of the British Museum (42nd edition): London, G. Woodfall, 370 p.Google Scholar
Gregory, J.W., 1897, The classification of the Palaeozoic echinoderms of the group Ophiuroidea: Proceedings of the Zoological Society of London for 1896, p. 10281044.Google Scholar
Haeckel, E.H., 1866, Generelle Morphologie der Organismen, Band II, Allgemeine Entwicklungsgeschichte der Organismen: Berlin, Georg Reimer, 160 p.CrossRefGoogle Scholar
Hall, J., 1858, Report on the Geological Survey of the State of Iowa, embracing the results of investigations made during portions of the years 1855–1857: Iowa Geological Survey, v. 1, pt. 2, 724 p.Google Scholar
Harper, J.A., and Morris, R.W., 1978, A new encrinasterid ophiuroid from the Conemaugh Group (Pennsylvania) of western Pennsylvania, and revision of the Encrinasteridae: Journal of Paleontology, v. 52, p. 155163.Google Scholar
Harris, A.W., 2018, Occurrence and attributes of two echinoderm-bearing faunas from the Upper Mississippian (Chesterian; Serpukhovian) Ramey Creek Member, Slade Formation, eastern Kentucky, U.S.A. [Ph.D. thesis]: Lexington, University of Kentucky, 294 p.CrossRefGoogle Scholar
Harris, A.W., and Ettensohn, F.R., 2017, Population analysis of a Late Mississippian (Chesterian) Echinoderm faunule across four contiguous depositional environments, Carter County, east-central Kentucky: Geological Society of America Abstracts with Programs, v. 49, no. 2, abs. 46-15, doi:10.1130/abs/2017NE-291240.CrossRefGoogle Scholar
Harris, A.W., Ettensohn, F.R., and Carnahan-Jarvis, J., 2018, A statistical approach to understanding diversity in an Upper Mississippian (Chesterian) echinoderm-rich unit across four contiguous lithofacies, Carter County, northeastern Kentucky: Geological Society of America Abstracts with Programs, v. 50, no. 3, abs. 30-6, doi:10.1130/abs/2018SE-313205.CrossRefGoogle Scholar
Harris, A.W., Ettensohn, F.R., and Carnahan-Jarvis, J., 2019, Paleoecological and statistical analysis of a new ophiuroid (Echinodermata) from Upper Mississippian (Chesterian) Slade Formation of northeastern Kentucky: Geological Society of America Abstracts with programs, v. 51, no. 3, abs. 5-4, doi: 10.1130/abs/2019SE-326814.CrossRefGoogle Scholar
Haude, R., 1999, Der—verzögerte—Ersatz eines Homonyms: Marginaster Haude 1995. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, v. 5, p. 292294.CrossRefGoogle Scholar
Hunter, A.W., Rushton, A.W.A., and Stone, P., 2016, Comments on the ophiuroid family Protasteridae and description of a new genus from the Lower Devonian of the Fox Bay Formation, Falkland Islands: Alcheringa, v. 40, p. 429442, doi:10.1080/03115518.2016.1218246.CrossRefGoogle Scholar
Hyman, L.H., 1955, The Invertebrates: Echinodermata, the Coelomate Bilateria: New York, McGraw-Hill, 763 p.Google Scholar
Jell, P.A., 1997, Early Carboniferous ophiuroids from Crawfordsville, Indiana: Journal of Paleontology, v. 71, p. 306316.CrossRefGoogle Scholar
Jell, P.A., and Theron, J.N., 1999, Early Devonian echinoderms from South Africa: Memoirs of the Queensland Museum, v. 43, p. 115199.Google Scholar
Johnson, R.G., 1964, The community approach to paleoecology, in Imbrie, J., and Newell, N., eds., Approaches to Paleoecology: New York, Wiley and Sons, p. 107134.Google Scholar
Kassler, P., 1973, The structural and geomorphic evolution of the Persian Gulf, in Purser, B.H., ed., The Persian Gulf, Holocene Carbonate Sedimentation and Diagenesis in a Shallow Epicontinental Sea: New York, Springer-Verlag, p. 1132.Google Scholar
Kidwell, S.M., 2001, Preservation of species abundance in marine death assemblages: Science, v. 294, p. 10911094, doi:10.1126/science.1064539.CrossRefGoogle ScholarPubMed
Kidwell, S.M., and Flessa, K.W., 1996, The quality of the fossil record: Populations, species, and communities: Annual Review of Earth and Planetary Sciences, v. 24, p. 433464.CrossRefGoogle Scholar
Kirk, E., 1942, Ampelocrinus, a new crinoid genus from the Upper Mississippian: American Journal of Science, v. 240, p. 2228.CrossRefGoogle Scholar
Kirk, E., 1944, Cymbiocrinus, a new inadunate crinoid genus from the Upper Mississippian: American Journal of Science, v. 242, p. 233245.CrossRefGoogle Scholar
Lewis, R.D., 1986, Relative rates of skeletal disarticulation in modern ophiuroids and Paleozoic crinoids: Geological Society of America Abstracts with Programs, v. 18, p. 672.Google Scholar
Lewis, R.D., 1987, Post-mortem decomposition of ophiuroids from the Mississippi Sound: Geological Society of America Abstracts with Programs, v. 19, p. 9495.Google Scholar
Lierman, R.T., Ettensohn, F.R., and Mason, C., 2011, Geology of the Carter Caves area: Lexington, American Institute of Professional Geologists, Kentucky Section, Spring 2011 Fieldtrip Guide, 40 p.Google Scholar
Lyon, S.S., 1860, Descriptions of four new species of Blastoidea from the subcarboniferous rocks of Kentucky: St. Louis Academy of Science, Transactions, v. 1, p. 628634.Google Scholar
Marsaglia, K.M., and Klein, G. deV., 1983, The paleogeography of Paleozoic and Mesozoic storm depositional systems: Journal of Geology, v. 91, p. 117142.CrossRefGoogle Scholar
Matsumoto, H., 1915, A new classification of the Ophiuroidea with descriptions of new genera and species: Proceedings of the Academy of Natural Sciences of Philadelphia, v. 67, p. 4392.Google Scholar
M'Coy, F., 1851, Systematic description of the British Palaeozoic fossils in the Geological Museum of the University of Cambridge, in Sedgwick, A., A Synopsis of the Classification of the British Palaeozoic Rocks: London, Parker, p. 1184.Google Scholar
Meek, F.B., and Worthen, A.H., 1860, Description of new Carboniferous fossils from Illinois and other western states: Proceedings of the Academy of Natural Sciences of Philadelphia, v. 12, p. 447472.Google Scholar
Meek, F.B., and Worthen, A.H., 1866a, Description of invertebrates from the Carboniferous System: Illinois Geological Survey, v. 2, section 2, p. 143411.Google Scholar
Meek, F.B., and Worthen, A.H., 1866b, Contributions to the palaeontology of Illinois and other western states: Proceedings of the Academy of Natural Sciences of Philadelphia, v. 18, p. 251275.Google Scholar
Meyer, D.L., 1971, Post mortem disarticulation of Recent crinoids and ophiuroids under natural conditions: Geological Society of America Abstracts with Programs, v. 3, p. 645.Google Scholar
Miller, S.A., and Gurley, W.F.S., 1888, Description of some new genera and species of Echinodermata from the Coal Measures and subcarboniferous rocks of Indiana, Missouri, and Iowa: Indiana Department of Geology and Natural Resources, 16th Annual Report, p. 327373.Google Scholar
Minitab, Inc., 2018, Minitab 18: http://www.minitab.com/ (accessed July 2018).Google Scholar
Müller, K.J., 1979, Silicification of fossils, in Fairbridge, R.W., and Jablonski, D., eds., The Encyclopedia of Paleontology: Stroudsburg, Pennsylvania, Dowden, Hutchinson, & Ross, p. 751753.CrossRefGoogle Scholar
Newell, N.D., Imbrie, J., Purdy, E.D., and Thurber, D.L., 1959, Organism communities and bottom facies, Great Bahama Bank: American Museum of Natural History Bulletin, v. 117, p. 183228.Google Scholar
Norwood, J.G., and Pratten, H., 1855, Notice of fossils from the Carboniferous Series of the western states, belonging to the genera Spirifer, Bellerophon, Pleurotomaria, Macrocheilus, Natica, and Loxonema, with descriptions of eight new characteristic species: Journal of the Academy of natural Sciences of Philadelphia, v. 3, p. 7177.Google Scholar
O'Hara, T.D., Hugall, A.F., Thuy, B., and Mousalli, A., 2014, Phylogenomic resolution of the class Ophiuroidea unlocks a global microfossil record: Current Biology, v. 24, p. 18741879, doi:10.1016/j.cub.2014.06.060.CrossRefGoogle ScholarPubMed
Patzkowsky, M.E., and Holland, S.M., 2012, Stratigraphic Paleontology: Chicago, University of Chicago Press, 259 p.CrossRefGoogle Scholar
Purser, B.H., and Evans, G., 1973, Regional sedimentation along the Trucial Coast, SE Persian Gulf, in Purser, B.H., ed., The Persian Gulf, Holocene Carbonate Sedimentation and Diagenesis in a Shallow Epicontinental Sea: New York, Springer-Verlag, p. 211231.Google Scholar
Raymond, P.E., 1912, On two new Paleozoic starfish (one of them found near Ottawa), and a new crinoid: Ottawa Naturalist, v. 26, p. 7981.Google Scholar
Schöndorf, F., 1910, Über einige ‘Ophiuriden und Asteriden’ des englischen Silur und ihre Bedeutung für Systematik paläozoischer Seesterne: Jahrbüchern des Nassauischen Vereins für Naturkunde in Wiesbaden, v. 63, p. 206256.Google Scholar
Schuchert, C., 1914, Stelleroidea Palaeozoica: Fossilium Catalogus I, Animalia, Pars 3: Berlin, W. Junk, 53 p.Google Scholar
Schuchert, C., 1915, Revision of Paleozoic Stelleroidea with special reference to North American Asteroidea: United States National Museum Bulletin no. 88, 311 p.Google Scholar
Shackleton, J.D., 2005, Skeletal homologies, phylogeny and classification of the earliest asterozoan echinoderms: Journal of Systematic Palaeontology, v. 3, p. 29114, doi:10.1017/S1477201905001525.CrossRefGoogle Scholar
Shumard, B.F., 1858, Echinodermata, in Shumard, B.F., and Swallow, G.C., Descriptions of new fossils from the Coal Measures of Missouri and Kansas: Transactions of the Academy of Science of St. Louis, v. 1, p. 221225.Google Scholar
Simpson, E.H., 1949, Measurement of diversity: Nature, v. 163, p. 688.CrossRefGoogle Scholar
Spencer, W.K., 1930, The British Palaeozoic Asterozoa: Monograph of the Palaeontographical Society, London, pt. 8, p. 389436.CrossRefGoogle Scholar
Spencer, W.K., 1951, Early Palaeozoic starfish: Philosophical Transactions of the Royal Society, Series B, Biological Sciences, v. 235, p. 87129.Google ScholarPubMed
Spencer, W.K., and Wright, C.W., 1966, Asterozoans, in Moore, R.C., ed., Treatise on Invertebrate Paleontology, Part U, Echinodermata 3, Volume 1: Boulder, Colorado, and Lawrence, Kansas, Geological Society of America (and University of Kansas Press), p. U1U107.Google Scholar
Stöhr, S., O'Hara, T., and Thuy, B., eds., 2017, World Ophiuroidea Database: http://www.marinespecies.org/ophiuroidea (accessed May 2017).Google Scholar
Thoral, M., 1935, Contribution à l’étude paléontologique de l'Ordovicien inférier de la Montagne Noire et révision sommaire de la faune cambrienne de la Montagne Noire [Ph.D. thesis]: Montpellier, France, Imprimerie de la Manufacture de la Charité, 362 p.Google Scholar
Triola, M.F., 2018, Elementary Statistics (13th edition): New York, Pearson, 792 p.Google Scholar
Twitchett, R.J., Feinberg, J.M., O'Connor, D.D., Alverez, W., and McCollum, L.B., 2005, Early Triassic ophiuroids: Their paleoecology, taphonomy and distribution: Palaios, v. 20, p. 213223, doi :10.2110/palo.2004.p04-30.CrossRefGoogle Scholar
Ulrich, E.O., 1890, American Paleozoic sponges, in Lindahl, J., ed., Paleontology of Illinois, Part 2, Section 3, Geology and Paleontology: Geological Survey of Illinois, v. 8, p. 209251.Google Scholar
United States Geological Survey (USGS), 2016, Topographic map of the Grahn quadrangle, Kentucky: U.S. Geological Survey, scale 1:24,000, 7.5 minute series.Google Scholar
Zeleny, C., 1903, A study of the rate of regeneration of the arms in the brittle-star, Ophioglypha lacertosa: Biological Bulletin, v. 6, p. 1217.CrossRefGoogle Scholar
Zeng, M., Ettensohn, F.R., and Wilhelm, D.B., 2013, Upper Mississippian (lower Carboniferous) carbonate stratigraphy and syndepositional faulting reveal likely Ouachita flexural forebulge effects across eastern Kentucky, U.S.A.: Sedimentary Geology, v. 289, p. 99114, doi:10.1016/j.sedgeo.2013.02.007.CrossRefGoogle Scholar