Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-25T19:47:49.422Z Has data issue: false hasContentIssue false

A new tube-builder hydractinian, symbiotic with hermit crabs, from the Cretaceous of Antarctica

Published online by Cambridge University Press:  20 May 2016

Eduardo B. Olivero
Affiliation:
Centro Austral de Investigaciones Científicas (CADIC), Malvinas Argentinas s/n, 9410 Ushuaia, Tierra del Fuego, Argentina
Maria B. Aguirre-Urreta
Affiliation:
Departamento de Ciencias Geológicas, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires, Argentina

Abstract

An Upper Cretaceous (early Maastrichtian) tube-building hydractinian (Psammoactinia antarctica n. gen. and sp.) from Sanctuary Cliffs, Snow Hill Island, believed to live in association with hermit crabs, is described for the first time from Antarctica. Psammoactinia forms thick, concentric, globular colonies that encrust gastropod shells and extend the shell aperture by forming an open spiral tube. The colony consists of concentric layers with chambers and pillars made of silt and very fine sand grains agglutinated by collophane, which is interpreted as a diagenetic modification of an original chitinous phosphatic material. On the basis of the additional finding of isolated claws of pagurid crabs, assigned to Paguristes sp., the functional analysis of the hydractinian structure, and a comparison with modern and fossil analogous structures it is concluded that the peculiar hydractinian tube is a carcinoecium that housed a symbiotic hermit crab.

Paleoenvironmental and paleoecological inferences suggest that the Psammoactinia–Paguristes association is mainly controlled by a fine-grained substrate and by a lack of abundant gastropod shells of different sizes. These factors do not necessarily correlate with absolute water depth, and favorable environments could include either offshore, relatively deep water or shallow restricted depositional settings.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agassiz, L. 1862. Contributions to the Natural History of the United States of America. Volume 4. Little, Brown & Co., Boston, 392 p.Google Scholar
Aguirre-Urreta, M. B., and Olivero, E. O. 1992. A Cretaceous hermit crab from Antarctica: predatory activities and bryozoan symbiosis. Antarctic Science, 4:207214.Google Scholar
Andre, M., and Lamy, E. 1939. Action des Pagures sur les coquilles qu'ils habitent. Journal de Conchyliologie, 83:234242.Google Scholar
Balss, H. 1924. Uber Anpassungen und Symbiose der Paguriden. Zeitschrift für Morphologie und Oekologie Tiere, 1:752792.Google Scholar
Baluk, W., and Radwanski, A. 1979. Boring ctenostomate bryozoans from the Korytnica Clays (Middle Miocene; Holy Cross Mountains, Central Poland). Acta Geologica Polonica, 29:243251.Google Scholar
Bishop, G. A. 1983. Fossil decapod Crustacea from the Late Cretaceous Coon Creek Formation, Union County, Mississippi. Journal of Crustacean Biology, 3:417430.CrossRefGoogle Scholar
Bishop, G. A. 1986. Two new crabs, Parapaguristes tuberculatus and Palaeoxantho libertiensis, from the Prairie Bluff Formation (Middle Maastrichtian), Union County, Mississippi, U.S.A. Proceedings of the Biological Society of Washington, 99:604611.Google Scholar
Boucot, A. J. 1990. Evolutionary Paleobiology of Behavior and Co-evolution. Elsevier Science Publishers, New York, 725 p.Google Scholar
Brien, P., Levi, C., Sara, M., Tuzet, O., and Vacelet, J. 1973. Spongiaires, p. 1716. In Grassé, P. P. (ed.), Traité de Zoologie, Anatomie, Systématique, Biologie, III (1). Masson et Cie, Paris.Google Scholar
Brightwell, L. R. 1950. Some experiments with the common hermit crab (Eupagurus bernhardus) Linn., and transparent univalve shells. Proceedings of the Zoological Society of London, 121:279283.Google Scholar
Brightwell, L. R. 1952. Further notes on the hermit crab Eupagurus bernhardus and associated animals. Proceedings of the Zoological Society of London, 123:6164.CrossRefGoogle Scholar
Buge, E., and Fischer, J. C. 1970. Atractosoecia incrustans (d'Orbigny) (Bryozoa Cyclostomata) espèce bathonienne symbiotique d'un Pagure. Bulletin de la Société géologique de France, 12:126133.Google Scholar
Burkenroad, M. D. 1963. The evolution of the Eucarida (Crustacea, Eumalacostraca) in relation to the fossil record. Tulane Studies in Geology, 2:316.Google Scholar
Busk, G. 1859. A Monograph of the Fossil Polyzoa of the Crag. Monographs Palaeontographical Society, 11:1136.CrossRefGoogle Scholar
Cairns, S. D., and Barnard, J. L. 1984. Redescription of Janaria mirabilis, a calcified hydroid from the Eastern Pacific. Bulletin Southern California Academy of Sciences, 83:111.Google Scholar
Calgren, O. 1928. Zur Symbiose zwischen Actinien und Paguriden. Zeitschrift für Morphologi und Oekologie Tiere, 12:165173.Google Scholar
Calman, W. T. 1911. The Life of Crustacea. Methuen and Co., London, 289 p.CrossRefGoogle Scholar
Carter, H. J. 1873. Transformation of an entire shell into chitinous structure by the polyp Hydractinia, with short descriptions of the polypidoms of five other species. The Annals and Magazine of Natural History, 11:415.Google Scholar
Carter, H. J. 1877. On the close relationship of Hydractinia, Parkeria, and Stromatopora; with description of new species of the former, both recent and fossil. The Annals and Magazine of Natural History, 19:4476.Google Scholar
Carter, H. J. 1882. Remarkable forms of Cellepora and Palythoa from the Senegambian coast. The Annals and Magazine of Natural History, 9:416419.Google Scholar
Cook, P. L. 1964. Polyzoa from West Africa. Notes on the genera Hippoporina Neviani, Hippoporella Canu, Cleidochasma Harmer and Hippoporidra Canu and Bassler (Cheilostomata, Ascophora). Bulletin of the British Museum (Natural History), Zoology, 12:335.Google Scholar
Crame, J. A., Pirrie, D., Riding, J. B., and Thomson, M. R. A. 1991. Campanian–Maastrichtian (Cretaceous) stratigraphy of the James Ross Island area, Antarctica. Journal of the Geological Society of London, 148:11251140.Google Scholar
Dales, R. P. 1957. Commensalism, p. 391412. In Hedgpeth, J. W. (ed.), Treatise on Marine Ecology and Paleoecology. Geological Society of America, Memoir 67, Volume 1.Google Scholar
Dana, J. D. 1851. On the classification of the Cancrinoidea. Silliman's American Journal of Science and Arts, Series 2, 12:121131.Google Scholar
Dollfus, G. F. 1906. Contribution des Hydrozoaires fossiles. Bulletin de la Société géologique de France, 4:121128.Google Scholar
Doumenc, D. A., and van Praët, M. 1987. Ordre des Actiniaires. Ordre des Ptychodactiniaires. Ordre des Corallimorphaires, p. 257401. In Grassé, P. P. (ed.), Traité de Zoologie, Anatomie, Systématique, Biologie, III (3). Masson et Cie, Paris.Google Scholar
Douvillé, H. 1906. Sur le genre Kerunia. Bulletin de la Société géologique de France, 4:129141.Google Scholar
Douvillé, H. 1908. A propos de Kerunia. Bulletin de la Société géologique de France, 7:1417.Google Scholar
Ehrenberg, K. 1931. Über Lebensspuren von Einsiedlerkrebsen. Palaeobiologica, 4:137174.Google Scholar
Feldmann, R. M., Tshudy, D. M., and Thomson, M. R. A. 1993. Late Cretaceous and Paleocene decapod crustaceans from James Ross Basin, Antarctic Peninsula. The Paleontological Society, Memoir 28:141.Google Scholar
Fischer, M. 1867. Sur les hydrozoaries fossiles du genre Hydractinia. Bulletin de la Société géologique de France, 24:689690.Google Scholar
Gail Fautin, D. 1992. A shell with a new twist. Natural History, 1992(4):5157.Google Scholar
Glaessner, M. F. 1969. Decapoda, p. R400R533. In Moore, R. C. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology, Part R, Arthropoda 4(2). Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Green, J. 1963. A Biology of Crustacea. H. F. and G. Witherby Ltd., London, 180 p.Google Scholar
Gwyne Vevers, H. (ed.). 1973. Coelenterata. The Zoological Record, 107:(1970):155, London.Google Scholar
Herberts, Ch. 1987. Ordre des Zoanthaires, p. 703810. In Grassé, P. P. (ed.), Traité de Zoologie, Anatomie, Systématique, Biologie, III (3). Masson et Cie, Paris.Google Scholar
Hill, D., and Wells, J. W. 1956. Hydrozoa—general features, p. F67F152. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Part F, Coelenterata. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Hincks, T. A. 1868. A History of the British Hydroid Zoophytes. Volume I, 338 p.; Volume II, 67 pls. Ed. John Van Voorst, London.Google Scholar
Hyden, F. M., and Forest, J. 1980. An in situ hermit crab from the early Miocene of southern New Zealand. Palaeontology, 23:471474.Google Scholar
Jensen, K. 1970. The interaction between Pagurus bernhardus (L.) and Hydractinia echinata (Fleming). Ophelia, 8:135144.Google Scholar
Johnston, G. 1837. The natural history of British zoophytes. III. On the structure and formation of the polypidoms. Magazine of Zoology and Botany, I(V):440448.Google Scholar
Kessel, E. 1938. Schneckenschalen, Krebse und Polypen. Natur und Volk, 68:428430.Google Scholar
Kilian, W., and Reboul, P. 1909. Les Céphalopodes Néocrétacés des Iles Seymour et Snow Hill. Wissenschaftliche Ergebnisse Der Schwedischen Südpolar–Expedition 1901–1903, 3:175, Stockholm.Google Scholar
Kramp, P. L. 1951. Medusae collected by the Lund University Chile expedition 1948–49. Lunds Universitets Arsskrift, 47(7):319.Google Scholar
Latreille, P. A. 1802–1803. Histoire naturelle, générale et particuliére des crustacés et des insectes. Volume 3. F. Dufart, Paris, 468 p.Google Scholar
Leanza, A. F. 1956. Mutualismo entre un Ermitaño y un Briozoario fósiles, cohabitantes en la conchilla de un caracol. Holmbergia, 5:145148.Google Scholar
Lecointre, G. 1930. Symbiose des cellépores et des gastropodes dans les Faluns de Touraine. Bulletin de la Société géologique de France, 29:401404.Google Scholar
Lecointre, G. 1934. Cellépores, gastropodes et pagures. Bulletin de la Société géologique de France, 3:485486.Google Scholar
Macellari, C. E. 1986. Late Campanian–Maastrichtian ammonite fauna from Seymour Island (Antarctic Peninsula). The Paleontological Society, Memoir 18:155.Google Scholar
Macellari, C. E. 1988. Stratigraphy, sedimentology and paleoecology of the Upper Cretaceous/Paleocene shelf-deltaic sediments of Seymour Island (Antarctic Peninsula), p. 2553. In Feldmann, R. M. and Woodburne, M. O. (eds.), Geology and Paleontology of Seymour Island. Geological Society of America, Memoir 169.Google Scholar
McFadden, C. S., McFarland, M. J., and Buss, L. W. 1984. Biology of hydractinnid hydroids. 1. Colony ontogeny in Hydractinia echinata (Fleming). Biological Bulletin, 166:5467.Google Scholar
Millard, N. A. H. 1975. Monograph on the Hydroida of Southern Africa. Annals of the South African Museum, 68:1513.Google Scholar
Milne-Edwards, H. 1832. Recherches sur l'organization et la classification naturelle des Crustacés décapodes. Annales des Science Naturelles, 25:298332.Google Scholar
Müller, A. H. 1979. Fossilization (Taphonomy), p. A2A78. In Robinson, R. A. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology, Part A, Introduction. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Nicholson, A. 1886. The Stromatoporoids. Part I. Monographs of the Paleontographical Society, 39:1130.Google Scholar
Olivero, E. B. 1992. Asociaciones de amonites de la Formación Santa Marta (Cretácico tardío), isla James Ross, Antártida, p. 4775. In Rinaldi, C. A. (ed.), Geología de la isla James Ross, Antártida. Instituto Antártico Argentino, Buenos Aires.Google Scholar
Olivero, E. B., and Scasso, R. A. 1992. Ciclos transgresivos–regresivos en el Cretácico superior de Antártida y su relación con cambios globales del nivel del mar. IV° Reunión Argentina de Sedimentología, Actas I:916, La Plata.Google Scholar
Olivero, E. B., and Rinaldi, C. A. 1986. Revisión del Grupo Marambio en la isla James Ross, Antártida/Revision of the Marambio Group, James Ross Island, Antarctica. Instituto Antártico Argentino, Contribución, 331:129.Google Scholar
Olivero, E. B., Martinioni, D. R., and Mussel, F. J. 1992. Upper Cretaceous sedimentology and biostratigraphy of western Cape Lamb (Vega Island, Antarctica). Implications on sedimentary cycles and evolution of the basin, P. 147164. In Rinaldi, C. A. (ed.), Geología de la isla James Ross, Antártida, Instituto Antártico Argentino, Buenos Aires.Google Scholar
Orbigny, A. d'. 1851. Prodrome de Paléontologie. Stratigraphie Universelle des Animaux Mollusques et Rayonnés, Paris, 428 p.Google Scholar
Ortmann, A. E. 1892. Die Decapoden-Krebse des Strassburger Museums. Zoologische Jahrbücher, Abteilung für Systematik, Ökologie und Geographie der Tiere, 6:241326.Google Scholar
Pallaroni, M. 1921. Sulla simbiosi di un Briozoario fossile e di un paguro. Atti Societá linguistica di scienze naturali e geographiche, 31:2028.Google Scholar
Palmer, T. J., and Hancock, C. D. 1973. Symbiotic relationships between ectoprocts and gastropods, and ectoprocts and hermit crabs in the French Jurassic. Palaeontology, 16:563566.Google Scholar
Papp, A., Zapfe, H., Bachmayer, F., and Tauber, A. F. 1947. Lebensspuren mariner Krebse. Akademie der Wissenschaften in Wien, Mathematisch-naturwissenschaftliche Klasse. Sitzungsberichte, Abteilung 1 Mineralogie, Biologie, Erdkunde, 155:281317.Google Scholar
Pax, F., and Müller, I. 1956. Zoantharien aus Französisch Westafrika. Bulletin de l'Institut Francais d'Afrique Noire, Series A, 18:418458.Google Scholar
Pirrie, D. 1989. Shallow marine sedimentation within an active margin basin, James Ross Island, Antarctica. Sedimentary Geology, 63:6182.CrossRefGoogle Scholar
Rinaldi, C. A. 1982. Upper Cretaceous in the James Ross Island group, p. 281286. In Craddock, C. (ed.), Antarctic Geoscience. University of Wisconsin Press, Madison.Google Scholar
Roger, J., and Buge, E. 1948. L'association Cellépore-Gastropode dans les Faluns de la Touraine. Bulletin de la Société Géologique de France, 17:461470.Google Scholar
Scasso, R. A., Olivero, E. B., and Buatois, L. 1991. Lithofacies, biofacies, and ichnoassemblages evolution of a shallow submarine volcaniclastic fan-shelf depositional system (Upper Cretaceous, James Ross Island, Antarctica). Journal of South American Earth Sciences, 4:239260.Google Scholar
Schäfer, W. 1972. Ecology and Paleoecology of Marine Environments. University of Chicago Press, Chicago, 624 p.Google Scholar
Schijfma, K. 1935. Observations on Hydractinia echinata (Flem.) and Eupagurus bernhardus (L.). Archives Néerlandaises Zoologie, 1:261314.Google Scholar
Spath, L. F. 1953. The Upper Cretaceous cephalopod fauna of Graham Land. Scientific Reports, Falkland Islands Dependencies Survey, 3:160.Google Scholar
Steinmann, G. 1878. Ueber fossile Hydrozoen, Palaeontographica, 25:101124.Google Scholar
Taylor, P. D., and Cook, P. L. 1981. Hippoporidra edax (Busk, 1859) and a revision of some fossil and living Hippoporidra (Bryozoa). Bulletin of the British Museum (Natural History), Geology, 35:243251.Google Scholar
Taylor, P. D., Schembri, P. J., and Cook, P. L. 1989. Symbiotic associations between hermit crabs and bryozoans from the Otago region, southeastern New Zealand. Journal of Natural History, 23:10591085.Google Scholar
Verrill, A. E. 1883. Report on the Anthozoa, and on some additional species dredged by the “Blake” in 1877–1879, and by the U.S. Fish Commision Steamer “Fish Hawk” in 1880–1882. Bulletin of the Museum of Comparative Zoology, Harvard, 11:172.Google Scholar
Vinassa di Regny, P. E. 1899. Studi sulle Idractinie fossili. R. Accademia dei Lincei. Memorie Classe di scienze fisiche, matematiche e naturali, 3:105155.Google Scholar
Walker, S. E. 1988. Taphonomic significance of hermit crabs (Anomura: Paguridea): epifaunal hermit crab-infaunal gastropod example. Palaeogeography, Palaeoclimatology, Palaeoecology, 63:4571.CrossRefGoogle Scholar
Walker, S. E. 1992. Criteria for recognizing marine hermit crabs in the fossil record using gastropod shells. Journal of Paleontology, 66:535558.Google Scholar
Yund, P. O., and Parker, H. M. 1988. Population structure of the-colonial hydroid Hydractinia sp. nov. C in the Gulf of Maine. Journal of Experimental Marine Biology and Ecology, 125:6382.Google Scholar