Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-08T05:18:13.425Z Has data issue: false hasContentIssue false

New species of lower Tithonian macroconchiate Hybonoticeras from Mexico and the co-occurrence of Mazapilites and Hybonoticeras in the Mexico-Caribbean area

Published online by Cambridge University Press:  21 May 2018

Federico Olóriz
Affiliation:
Departamento de Estratigrafía y Paleontología, Facultad de Ciencias, Universidad de Granada, Fuente Nueva S/N, 18002, Granada, Spain 〈[email protected]
Ana Bertha Villaseñor
Affiliation:
Departamento de Paleontología, Instituto de Geología, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica, Ciudad Universitaria, 04510, Coyoacán, Ciudad de México, Mexico 〈[email protected]

Abstract

The ammonite Hybonoticeras authariformis new species [M] is erected from the lower Tithonian of Mexico, adding a new example of endemism for the genus Hybonoticeras in records from epicontinental areas. The newly described species is the first evidence of unequivocal lowermost Tithonian macroconchiate hybonoticeratines reported from the Mexico-Caribbean area. Precise biostratigraphic control based on bed-by-bed sampling is first reported for the combined record of macroconchiate Hybonoticeras Breistroffer, 1947 with Mazapilites Burckhardt, 1919 in Mexico, indicating an early but not earliest Tithonian age. A preliminary revision of the type material of species assigned to the genus Mazapilites points to an inconclusive understanding of both intraspecies diversity and the real meaning of the nominal species formulated by Burckhardt, thus revealing defective knowledge about precise biostratigraphy at both the genus and species levels. Published hybonoticeratines and mazapilitines from Mexico and Cuba are revisited to update precise interpretation of their systematics, biostratigraphy, and correlation potential, and to investigate their combined occurrence. Previous information about Cuban hybonoticeratines and mazapilitines is too limited to be conclusively interpreted; their combined record cannot be demonstrated in Cuba. Special relevance is given to a potential occurrence of Mazapilites in uppermost Kimmeridgian horizons in Cuba. The obtained results update the biostratigraphic meaning and systematic interpretation of the investigated ammonites, and signal topics for future research of interest in their paleobiological and palebiogeographic interpretation.

UUID: http://zoobank.org/References/78c89620-fa2e-4de5-985d-819421a858f9

Type
Memoir
Copyright
Copyright © 2018, The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Álzaga-Ruiz, H., and Pano-Arciniega, A., 1989, Origen de la Formación Chivillas y presencia del Jurásico tardío en la región de Tehuacán, Puebla, México: Revista del Instituto Mexicano del Petróleo, v. 21, p. 515.Google Scholar
Ángeles-Aquino, F., and Cantú-Chapa, A., 2001, Subsurface Upper Jurassic stratigraphy in the Campeche Shelf, Gulf of Mexico, in Bartolini, C., Buffler, R.T., and Cantú-Chapa, A., eds., The Western Gulf of Mexico Basin: Tectonics, Sedimentary Basins, and Petroleum Systems: American Association of Petroleum Geologists Memoir, v. 75, p. 343352.Google Scholar
Ángeles-Moreno, E., 2006, Petrografía, geología estructural y geocronología del borde noroccidental del terreno Cuicateco, Sierra Mazateca, Estado de Oaxaca, México [M.D. dissertation]: México City, Universidad Nacional Autónoma de México, 219 p.Google Scholar
Arkell, W.J., 1956, Jurassic Geology of the World: London, Oliver and Boyd, Ltd., 806 p.Google Scholar
Arkell, W.J., Kummel, B., and Wright, C., 1957, Mesozoic Ammonoidea, in Moore, R.C., ed., Treatise on Invertebrate Paleontology, Part L, Mollusca 4, Cephalopoda. Ammonoidea: Boulder, Colorado, and Lawrence, Kansas, Geological Society of America (and University of Kansas Press), p. L80L465.Google Scholar
Barthel, W., 1959, Die Cephalopoden des Korallenkalks aus dem oberen Malm von Laisacker bei Neuburg a. d. Donau: I. Gravesia, Sutneria, Hybonoticera s: Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, v. 108, p. 4774.Google Scholar
Benecke, E.W., 1866, Über Trias und Jura in den Südalpen: Geognostisch-Paläontologische Beiträge, v. 1, p. 1202.Google Scholar
Benzagaggh, M., 2000, Le Malm Supérieur et le Berriasien dans le Prérif interne et le Mésorif (Rif, Moroc): Biostratigraphie, lithostratigraphie, paléogéographie et évolution tectono-sédimentaire: Documents des Laboratoires de Géologie de Lyon, v. 152, 347 p.Google Scholar
Benzagaggh, M., and Atrops, F., 1997, Stratigraphie et associations de faune d’ammonites des zones du Kimmeridgien, Tithonien et Berriasien basal dans le Prérif interne (Rif, Maroc): Newsletters on Stratigraphy, v. 35, p. 127163.Google Scholar
Berckhemer, F., 1922, Beschreibung wenig bekannter und neuer Ammonitenformen aus dem oberen Weißen Jura Württembergs: Jahreshefte des Vereins für vaterländische Naturkunde in Württemberg, Stuttgart, v. 78, p. 6879.Google Scholar
Berckhemer, F., and Hölder, H., 1959, Ammoniten aus dem Oberen Weissen Jura Süddeutschlands: Beihefte zum Geologischen Jahrbuch, v. 35, p. 1135.Google Scholar
Bird, D., and Burke, K., 2006, Pangea breakup: Mexico, Gulf of Mexico, and central Atlantic Ocean: Expanded Abstracts of the Technical Program, Society of Exploration Geophysicists, 76th Annual International Meeting and Exposition, p. 1013–1016, doi: 10.1190/1.2369685.Google Scholar
Bird, D., Burke, K., Hall, S.A., and Casey, J.F., 2005, Gulf of Mexico tectonic history: Hotspot tracks, crustal boundaries, and early salt distribution: American Association of Petroleum Geologists Bulletin, v. 89, p. 311328. doi: 10.1306/10280404026.Google Scholar
Blair, T.C., 1987, Tectonic and hydrologic controls on cyclic alluvial fan, fluvial, and lacustrine rift-basin sedimentation, Jurassic-lowermost Cretaceous Todos Santos Formation, Chiapas, Mexico: Journal of Sedimentary Petrology, v. 57, p. 845862.Google Scholar
Blair, T.C., 1988, Mixed siliciclastic-carbonate marine and continental syn-rift sedimentation, Upper Jurassic-lowermost Cretaceous Todos Santos and San Ricardo formations, western Chiapas, Mexico: Journal of Sedimentary Petrology, v. 58, p. 623636.Google Scholar
Böse, E., 1923, Algunas faunas cretácicas de Zacatecas, Durango y Guerrero, con una descripción petrográfica de las rocas eruptivas y de contacto de las sierras de Minillas, Cerro Prieto, Pichagua y Sierra de Ramírez: Boletín del Instituto Geológico de México, v. 42, 219 p.Google Scholar
Boschman, L.D., van Hinsbergen, D.J.J., Torsvik, T.H., Spakman, W., and Pindell, J.L., 2014, Kinematic reconstruction of the Caribbean region since the Early Jurassic: Earth Science Reviews, v. 138, p. 102136. doi: 10.1016/j.earscirev.2014.08.007.Google Scholar
Breistroffer, M., 1947, Notes de Nomenclature pal�ozoologique. I. Ammonites jurassiques et cr�tac�es: Proc�s verbaux des s�ances mensuelles, Soci�t� Scientifique du Dauphin�, Grenoble, v. 26, Nr. 195, 5 p.Google Scholar
Buchy, M.-C., 2010, Morphologie dentaire et régime alimentaire des reptiles marins du Mésozoïque: Revue critique et réévaluation: Oryctos, v. 9, p. 4982.Google Scholar
Buchy, M.-C., Vignaud, P., Frey, E., Stinnesbeck, W., and González-González, A. H., 2006, A new thalattosuchian crocodyliform from the Tithonian (Upper Jurassic) of north-eastern Mexico: Comptes Rendus Palevol, v. 5, no. 6, 785794. doi: 10.1016/j.crpv.2006.03.003.Google Scholar
Burckhardt, C., 1903, Beiträge zur Kenntnis der Jura und Kreide Formation der Cordillere: Palaeontographica, v. 50, p. 1145.Google Scholar
Burckhardt, C., 1906, La faune jurassique de Mazapil: Boletín del Instituto Geológico de México, v. 23, p. 1216.Google Scholar
Burckhardt, C., 1919–1921, Faunas Jurásicas de Symón (Zacatecas) y faunas Cretácicas de Zumpango del Río (Guerrero): Boletín del Instituto Geológico de México, v. 33, 135 p.Google Scholar
Burckhardt, C., 1930, Étude synthétique sur le Mésozoïque Mexicain: Mémoires de la Société Paléontologique Suisse, v. 49–50, 280 p.Google Scholar
Busby, C.J., Bassett, K., Steiner, M.B., and Riggs, N., 2005, Climatic and tectonic controls on Jurassic intra-arc basins related to northward drift of North America, in Anderson, T.H., Nourse, J.A., McKee, J.W., and Steiner, M.B., eds., The Mojave-Sonora Megashear Hypothesis: Development, Assessment, and Alternatives: Geological Society of America Special Paper 393, p. 359376. doi: 10.1130/0-8137-2393-0.359.Google Scholar
Byerly, G.R., 1991, Igneous activity, in Salvador, A., ed., The Gulf of Mexico Basin: Boulder, Colorado, Geological Society of America (The Geology of North America, Volume J), p. 91108.Google Scholar
Callomon, J.H., 1981, Superfamily Perisphinctaceae, in House, M.R., and Senior, J.R., eds., The Ammonoidea, The Evolution, Classification, Mode of Life and Geological Usefulness of a Major Fossil Group, Part 5, Classification of Jurassic Ammonitina: London, Academic Press, (Systematics Association Special Volume 18), p. 101155.Google Scholar
Callomon, J.H., 1992, Upper Jurassic, especially of Mexico, in Westermann, G.E.G., ed., The Jurassic of the Circum Pacific, Part 4. Biochronology 12: New York, Cambridge University Press, p. 261272.Google Scholar
Campa, M.F., Campos, M., Flores, R., and Oviedo, R., 1974, La secuencia mesozoica volcánico-sedimentaria metamorfizada de Ixtapan de la Sal, Méx.-Teloloapan, Gro.: Boletín de la Sociedad Geológica Mexicana, v. 35, p. 728.Google Scholar
Cantú-Chapa, A., 1963, Étude biostratigraphique des ammonites du centre et de l’est du Mexique (Jurassique Supérieur et Crétacé): Mémoires de la Société Géologique de France, n. sér., v. 42, 99 p.Google Scholar
Cantú-Chapa, A., 1971, La Serie Huasteca (Jurásico Medio-Superior) del centro este de México: Revista del Instituto Mexicano del Petróleo, v. 3, p. 1740.Google Scholar
Cantú-Chapa, A., 1979, Bioestratigrafía de la serie Huasteca (Jurásico Medio y Superior) en el subsuelo de Poza Rica: Veracruz, Revista del Instituto Mexicano del Petróleo, v. 11, no 2, p. 1424.Google Scholar
Cantú-Chapa, A., 1984, El Jurásico Superior de Tamán, San Luis Potosí, este de México, in Perrilliat, M.C., ed., Memorias del 3er Congreso Latinoamericano de Paleontología: México City, Instituto de Geología, Universidad Nacional Autónoma de México, p. 207215.Google Scholar
Cantú-Chapa, A., 2001, Mexico as the western margin of Pangea based on biogeographic evidence from the Permian to the Lower Jurassic, in Bartolini, C., Buffler, R. T., and Cantú-Chapa, A., eds., The Western Gulf of Mexico Basin: Tectonics, Sedimentary Basins, and Petroleum Systems: American Association of Petroleum Geologists, Memoir, v. 75, p. 127.Google Scholar
Cantú-Chapa, A., 2003, Subsurface mapping and structural elements of the top Jurassic in eastern Mexico (Poza Rica and Tampico districts), in Bartolini, C., Buffler, R.T., and Blickwede, J., eds., The Circum-Gulf of Mexico and the Caribbean: Hydrocarbon Habitats, Basin Formation, and Plate Tectonics: American Association of Petroleum Geologists Memoir, v. 79, p. 330339.Google Scholar
Cantú-Chapa, A., 2006, New Upper Tithonian (Jurassic) ammonites from the Chinameca Formation in southern Veracruz, eastern Mexico: Journal of Paleontology, v. 80, p. 294308. doi: 10.1666/0022-3360(2006)080[0294:NUTJAF]2.0.CO;2.Google Scholar
Cantú-Chapa, A., and Ortuño-Maldonado, E., 2003, The Tithonian (Upper Jurassic) Edzna Formation, an important hydrocarbon reservoir of the Campeche shelf, Gulf of Mexico, in Bartolini, C., Buffler, R.T., and Blickwede, J., eds., The Circum-Gulf of Mexico and the Caribbean: Hydrocarbon Habitats, Basin Formation, and Plate Tectonics: American Association of Petroleum Geologists Memoir 79, p. 305311.Google Scholar
Caracuel, J., and Olóriz, F., 1999, Recent data on the Kimmeridgian-Tithonian boundary in the Sierra Norte of Mallorca (Spain); with notes on the genus Hybonoticeras Breistroffer: Geobios, v. 32, p. 575591.Google Scholar
Carfantan, J.C., 1983, Les ensembles géologiques du Mexique méridional: Evolution géodynamique durant le Mésozoïque et le Cénozoïque: Geofísica Internacional, v. 22, p. 937.Google Scholar
Castro-Mora, J., Schlaepfer, C.J., and Martínez-Rodríguez, E., 1975, Estratigrafía y microfacies del mesozoico de la Sierra Madre del Sur, Chiapas: Boletín de la Asociación Mexicana de Geólogos Petroleros, v. 27, p. 195.Google Scholar
Cecca, F., 1999, Palaeobiogeography of Tethyan ammonites during the Tithonian (latest Jurassic): Palaeogeography, Palaeoclimatology, Palaeoecology, v. 147, p. 137.Google Scholar
Cecca, F., and Zeiss, A., 1994, Kimmeridgian/Tithonian boundary. [Limite Kimmeridgien/Tithonien]: Geobios Mémoire Spécial No. 17, p. 771772.Google Scholar
Centeno-García, E., Busby, C., Busby, M., and Gehrels, G., 2007, Estratigrafía y procedencia de zircones detríticos de la región costera de los estados de Michoacán y Colima y su significado tectónico complejo: GeoChortís, GC2007-03P, p. 3.Google Scholar
Challinor, A.B., and Hikuroa, D.C.H., 2007, New Middle and Upper Jurassic belemnite assemblages from West Antarctica (Latady Group, Ellsworth Land): Taxonomy and paleobiogeography. Palaeontologia Electronica, v. 10, no. 1, 6A 29 p. http://palaeo-electronica.org/paleo/2007_1/assemblage/index.html (accessed 19 October 2017).Google Scholar
Christ, H.A., 1960, Beiträge zur Stratigraphie und Paläontologie des Malm von Westsizilien: Schweizerische Paläontologische Abhandlungen, v. 77, p. 1141.Google Scholar
Christeson, G.L., Van Avendonk, J.H.A., Norton, I.O., Snedden, J.W., Eddy, D.R., Karner, G.D., and Johnson, C.A., 2014, Deep crustal structure in the eastern Gulf of Mexico: Journal of Geophysical Research. Solid Earth, v. 119, p. 67826801, doi: 10.1002/2014JB011045.Google Scholar
Cobiella-Reguera, J. L., and Olóriz, F., 2009, Oxfordian-Berriasian stratigraphy of the North American paleomargin in western Cuba: Constraints for the geological history of the proto-Caribbean and the early Gulf of Mexico, in Bartolini, C., and Ramos, J. R., eds., Petroleum Systems in the Southern Gulf of Mexico: American Association of Petroleum Geologists Memoir, v. 90, p. 421451, doi: 10.1306/1311304M903339.Google Scholar
Cole, G.A., Yu, A., Peel, F., Taylor, C.H., Requejo, R., DeVay, J., Brooks, J., Bernard, B., Zumberge, J., and Brown, S., 2001, The deep water GoM petroleum system: Insights from piston coring defining seepage, anomalies, and background, in Fillon, R.H., Rosen, N.C., Weimer, P., Lowrie, A., Pettingill, H., Phair, R.L., Roberts, H.H., and van Hoorn, B., eds., Petroleum Systems of Deep Water Basins: Global and Gulf of Mexico Experience, Program and Abstracts: Houston, Texas, 21st Bob F. Perkins Research Conference, Gulf Coast Section Society of Economic Paleontologists and Mineralogists Foundation, p. 18–19.Google Scholar
Collignon, M., 1959, Atlas des Fossiles Caractéristiques de Madagascar : Fascicule V (Kimmeridgien): République Malgache, Service Géologique, Tananarive, pl. 96133.Google Scholar
Contreras, B., Gómez Luna, M.E., Martínez Cortés, A., and González Casildo, V., 1991, Catálogo de las Amonitas de México : Parte I, Jurásico Superior: Mexico City, Instituto Mexicano del Petróleo, Subdirección de Tecnología de Exploración, CAO-5508,55 p., 151 pl.Google Scholar
Dall, W.H., 1898, Synopsis of the Recent and Tertiary Psammobiidae of North America: Academy of Natural Sciences of Philadelphia Proceedings, v. 50, p. 5762.Google Scholar
Dall, W.H., 1896–1900, Pelecypoda, in Zittel, K.A. von. Text-book of Palaeontology (translation and edition by C.R. Eastman): New York, Macmillan & Company, v. 1, p. 346429.Google Scholar
De Wever, P., Geyssant, J.R., Azema, J., Devos, I., Duée, G., Manivit, H., and Vrielynck, B., 1986, La Coupe de Santa Anna (Zone de Sciacca, Sicile): Une synthèse biostratigraphique des apports des macro-, micro- et nannofossiles du Jurassique supérieur et Crétacé inferieur: Revue de Micropaléontologie, v. 29, no. 3, p. 141186.Google Scholar
Del Castillo, A., and Aguilera, J., 1895, Fauna fósil de la Sierra de Catorce: Boletín de la Comisión Geológica de México, v. 1, 55 p.Google Scholar
Delgado-Argote, L.A., 1989, Regional implications of the Jurassic–Cretaceous volcano-sedimentary Cuicateco terrane, Oaxaca, México: Geofísica Internacional, v. 28, p. 939973.Google Scholar
Delgado-Argote, L.A., López-Martínez, M., York, D., and Hall, C.M., 1992, Geologic framework and geochronology of ultramafic complexes of the southern Mexico: Canadian Journal of Earth Sciences, v. 29, p. 15901604.Google Scholar
Dercourt, J., Ricou, L.-E., and Vrielynck, B., eds., 1993, Atlas Tethys: Paleoenvironmental Maps: Paris, Gauthier-Villars, 307 p., 1 pl., 14 maps.Google Scholar
Di Stefano, G., 1883, Sopra altri fossili del Titonio inferiore di Sicilia: Giornale de Scienze Naturali ed Economiche de Palermo, v. 10, p. 331.Google Scholar
Dickinson, R.W., and Lawton, T.F., 2001a, Tectonic setting and sandstone petrofacies of the Bisbee Basin (USA-Mexico): Journal of South American Earth Sciences, v. 14, p. 475504, https://doi.org/10.1016/S0895-9811(01)00046-3.Google Scholar
Dickinson, R.W., and Lawton, T.F., 2001b, Carboniferous to Cretaceous assembly and fragmentation of Mexico: Geological Society of America Bulletin, v. 113, p. 11421160, doi: 10.1130/0016-7606(2001)113<1142:CTCAAF>2.0.CO;2.2.0.CO;2.>Google Scholar
d’Orbigny, A., 1844, Paléontologie Française, Terraines crétacés,v. 3, Mollusques: Paris, Arthus Bertrand, 807 p.Google Scholar
d’Orbigny, A., 1850, Prodrôme de Paléontologie Stratigraphique Universelle des Animaux Mollusques et Rayonnés: Paris, G. Masson, 428 pp.Google Scholar
Eguiluz de Antuñano, S., 2001, Geologic evolution and gas resources of the Sabinas Basin in northeastern Mexico, in Bartolini, C., Buffler, R.T., and Cantú-Chapa, A., eds., The Western Gulf of Mexico Basin: Tectonics, Sedimentary Basins, and Petroleum Systems: American Association of Petroleum Geologists Memoir, v. 75, p. 241270.Google Scholar
Eguiluz de Antuñano, S., Aranda-García, M., and Marrett, R., 2000, Tectónica de la Sierra Madre Oriental, México: Boletín de la Sociedad Geológica Mexicana, v. 53, p. 126.Google Scholar
Enay, R., 1962, L’étage Tithonique: Colloque du Jurassique, Luxembourg 1962, Volume des Comptes Rendus et Mémoires, Institut Grand-Ducal, Section des Sciences Naturelles, Physiques et Mathématiques, p. 355–379.Google Scholar
Enay, R., 1963, La nomenclature stratigraphique du Jurassique terminal, ses problèmes et sa normalisation: Bulletin trimestriel du Service d’Information Géologique du Bureau des Recherches Géologiques et Minières, Paris, v. 59, p. 19.Google Scholar
Enay, R., 1973, Upper Jurassic (Tithonian) ammonites, in Hallam, A., ed., Atlas of Palaeobiogeography: Amsterdam, Elsevier, p. 297307.Google Scholar
Enay, R., 2009, Les faunes d’ammonites de l’Oxfordien au Tithonien et la biostratigraphie des Spiti-Shales (Callovien supérieur-Tithonien) de Thakkhola, Népal central: Documents des Laboratoires de Géologie de Lyon, v. 166, 351 p.Google Scholar
Enay, R., Martin, C., Monod, O., and Thieuloy, P., 1971, Jurassique supérieur à ammonites (Kimmeridgien-Tithonique) dans l’autochtone du Taurus de Beysehir (Turquie méridionale): Annals of the Hungarian Geological Institute, v. 54, p. 397422.Google Scholar
Enay, R., Hantzpergue, P., Soussi, M., and Mangold, C., 2005, La limite Kimméridgien-Tithonien et l’âge des formations du Jurassique supérieur de la Dorsale tunisienne, comparaisons avec l’Algérie et la Sicile: Geobios, v. 38, p. 437450, doi: 10.1016/j.geobios.2004.01.001.Google Scholar
Enos, P., 1983, Late Mesozoic paleogeography of Mexico, in Reynolds, M.W., and Dolly, E.D., eds., Mesozoic Paleogeography of the west-central United States, Rocky Mountain Paleogeography Symposium 2: Denver, Colorado, Rocky Mountain Section, Society of Economic Paleontologists and Mineralogists, p. 133157.Google Scholar
Erben, H.K., 1957, New biostratigraphic correlations in the Jurassic of eastern and south-central Mexico, in El Mesozoico del Hemisferio Occidental y sus Correlaciones Mundiales, 20th International Geological Congress, Mexico City, 1956: Editorial Stylo, México, [Trabajos], Sección 2, p. 43–52.Google Scholar
Fatmi, A.N., and Zeiss, A., 1999, First Upper Jurassic and Lower Cretaceous (Berriasian) ammonite from the Sembar Formation (‘Belemnite Shales’), Windar Nai, Lasbela, Balochistan, Pakistan: Geological Survey of Pakistan Memoir, v. 19, 114 p.Google Scholar
Favre, E., 1877, La Zone à Ammonites acanthicus dans les Alpes de la Suisse et de la Savoie: Mémoire Société Paléontologique Suisse, v. 4, p. 1113.Google Scholar
Ferrari, L., Manea, V.C., and Manea, M., 2007, Fragmentación de la placa de Norteamérica y nueva geometría del bloque Chortís: Una posible explicación de la tectónica del neógeno en el sureste de México, in GeoChortis, Simposio: La Conexión Chortis-Sur de México en el Tiempo y en el Espacio, Juriquilla, Querétaro, México, 8–10 de Agosto, 2007: Mexico D.F., Universidad Nacional Autónoma de México, abstract GC2007-07-1P, p. 5.Google Scholar
Fillon, R.H., 2007, Mesozoic Gulf of Mexico Basin evolution from planetary perspective and petroleum system implications: Petroleum Geoscience, v. 13, p. 105126, doi: 10.1144/1354-079307-745.Google Scholar
Fleming, J., 1828, A History of British Animals, Exhibiting the Descriptive Characters and Systematical Arrangement of the Genera and Species of Quadrupeds, Birds, Reptiles, Fishes, Mollusca and Radiata of the United Kingdom; including the indigenus, extirpated and extinct kinds; together with periodical and occasional visitants: Edinburgh, Bell & Bradfute, 554 p.Google Scholar
Fözy, I., Janssen, N.M.M., and Price, G.D., 2011, High-resolution ammonite, belemnite and stable isotope record from the most complete Upper Jurassic section of the Bakony Mts (Transdanubian Range, Hungary): Geologica Carpathica, v. 62, p. 413433, doi: 10.2478/v10096-011-0030-y.Google Scholar
Fontannes, F., 1879, Description des Ammonites des Calcaires du Château de Crussol, Ardèche (zones à Oppelia tenuilobata et Waagenia beckeri): France, Paris, Lyon Georg Libraire, 122 p.Google Scholar
Ford, D., and Golonka, J., 2003, Phanerozoic paleogeography, paleoenvironment and lithofacies maps of the circum-Atlantic margins: Marine and Petroleum Geology, v. 20, p. 249285, doi: 10.1016/S0264-8172(03)00041-2.Google Scholar
Freydier, C., Martinez, R.J., Lapierre, H., Tardy, M., and Coulon, C., 1996, The Early Cretaceous Arperos oceanic basin (western Mexico): Geochemical evidence for an aseismic ridge formed near a spreading center: Tectonophysics, v. 259, p. 343367.Google Scholar
García-Díaz, J.L., 2004, Étude géologique de la Sierra Madre del Sur aux environs de Chilpancingo et d’Olinalá, Gro.: une contribution à la connaissance de l’évolution géodynamique de la marge Pacifique du Mexique depuis le Jurassique: Géologie appliquée [Ph.D. dissertation]: Chambéry, France, l’Université de Savoie Mont Blanc, 148 p.Google Scholar
Gaumet, F., and Letouzey, J., 2002, Northwestern Cuba’s deepwater potential: Offshore Magazine, http://www.offshore-mag.com/articles/print/volume-62/issue-9/news/northwestern-cubas-deepwater-potential.html (accessed 19 October 2017), 6 p.Google Scholar
Gerasimov, N.A., Kuznetsova, K.L, Mikhailov, N.P., and Uspenskaya, E.A., 1975, Correlation of the Portlandian, Tithonian and Volgian stages, in Colloque sur la limite Jurassique-Crétacé, Lyon, Neuchâtel, Septembre 1973: Paris, Édition du Bureau de Recherches Géologiques et Minières, v. 86, p. 117121.Google Scholar
Geyssant, J., 1997, Tithonien, in Cariou, E., and Hantzpergue, P., coords., Biostratigraphie du Jurassique Ouest-Européen et Mediterranéen: Groupe Français d’Études Jurassiques, Elf ep Éditions Mémoire, v. 17, p. 97102.Google Scholar
Geyssant, J., and Enay, R., 1991, Tithonique, in Réactualisation des Échelles d’Ammonites: 3rd International Symposium on Jurassic Stratigraphy, Poitiers, France, 1991, Abstracts Volume, Groupe Français d’Étude du Jurassique, p. 134.Google Scholar
Giunta, G., Beccaluva, J., and Siena, F., 2006, Caribbean plate margin evolution: Constraints and current problems: Geologica Acta, v. 4, p. 265277.Google Scholar
Goldhamer, R.K., 1999, Mesozoic sequence stratigraphy and paleogeographic evolution of northeast Mexico, in Bartolini, C., Wilson, J.L., and Lawton, T.F., eds., Mesozoic Sedimentary and Structural History of North-Central Mexico: Geological Society of America Special Paper 340, p. 158.Google Scholar
Goldhamer, R.K., and Johnson, C.A., 2001, Middle Jurassic–Upper Cretaceous paleogeographic evolution and sequence-stratigraphic framework of the northwest Gulf of Mexico rim, in Bartolini, C., Buffler, R.T., and Cantú-Chapa, A., eds., The Western Gulf of Mexico Basin: Tectonics, Sedimentary Basins, and Petroleum Systems: American Association of Petroleum Geologists Memoir, v. 75, p. 4581.Google Scholar
Golonka, J., 2007, Phanerozoic paleoenvironment and paleolithofacies maps: Mesozoic: Geologia, v. 33, p. 211264.Google Scholar
Gordon, M.B., 1993, Revised Jurassic and Early Cretaceous (pre-Yojoa Group) stratigraphy of the Chortís Block: Paleogeographic and tectonics implications, in Gulf Coast Section, Society Economic Paleontologists and Mineralogists Foundation, 13th Annual Research Conference, Proceedings: Houston, Texas, SEPM Society of Sedimentary Geology, p. 143–154.Google Scholar
Gradstein, F.M., Ogg, J.G., Schmitz, M.D., and Ogg, G.M., eds., 2012, The Geologic Time Scale 2012, Volume 1: Amsterdam, Elsevier, 1144 p.Google Scholar
Gray, S.A., 1847, A list of the genera of Recent Mollusca, their synonyms and types: Zoological Society of London Proceedings, v. 15, p. 129219.Google Scholar
Grigore, D., 2011, Kimmeridgian-lower Tithonian ammonite assemblages from Ghilcoş–Hăghimaş Massif (eastern Carpathians, Romania): Acta Palaeontologica Rommaniae, v. 7, p. 177189.Google Scholar
Guzmán-Vega, M.A., Castro-Ortíz, L., Román-Ramos, J.R., Medrano-Morales, L., Valdéz, L.C., Vázquez-Covarrubias, E., and Ziga-Rodríguez, G., 2001, Classification and origin of petroleum in the Mexican Gulf Coast Basin: An overview, in Bartolini, C., Buffler, C.R.T., and Cantú-Chapa, A., eds., The Western Gulf of Mexico Basin: Tectonics, Sedimentary Basins, and Petroleum Systems: American Association of Petroleum Geologists Memoir, v. 75, p. 127142.Google Scholar
Gygi, R., 1986, Eustatic sea-level changes of the Oxfordian (Upper Jurassic) and their effect documented in sediment and fossil assemblages of an epicontinental sea: Eclogae Geologicae Helvetiae, v. 79, p. 455491.Google Scholar
Gygi, R., 1999, Ammonite ecology in Late Jurassic time in northern Switzerland: Eclogae Geologicae Helvetiae, v. 92, p. 129137.Google Scholar
Haberl, H., Schairer, G., Schweigert, G., and Zeiss, A., 1999, Ein erster Fund von Hybonoticeras im Dolomit von Grossmehring bei Ingolstadt (Südliche Frankenalb, Bayern): Mitteilungen der Bayerischen Staatssammlung für Paläontologie und Historische Geologie, v. 39, p. 1319.Google Scholar
Hacker, B.R., Donato, M.M., Barnes, C.G., McWilliams, M.O., and Ernst, W.G., 1995, Timescales of orogeny: Jurassic construction of the Klamath Mountains: Tectonics, v. 14, no. 3, p. 677703.Google Scholar
Hantzpergue, P., Atrops, F., and Enay, R., 1991, Kimmeridgien, in Réactualisation des Échelles d’Ammonites : 3rd International Symposium on Jurassic Stratigraphy, Poitiers, France, 1991, Abstracts Volume, Groupe Français d’Étude du Jurassique, p. 133.Google Scholar
Hantzpergue, P., Atrops, F., and Enay, R., 1997, Le Kimmeridgien, in Cariou, E., and Hantzpergue, P., coords., Biostratigraphie du Jurassique Ouest-Européen et Mediterranéen: Groupe Français d’Études Jurassiques, Elf ep Éditions Mémoire, v. 17, p. 8796.Google Scholar
Hölder, H., and Ziegler, B., 1959, Stratigraphische und faunistische Beziehungen im Weissen Jura (Kimmeridgien) zwischen Süddeutschland und Ardèche: Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, v. 108, p. 50214.Google Scholar
Holz, M., 2015, Mesozoic paleogeography and paleoclimates—a discussion of the diverse greenhouse and hothouse conditions of an alien world: Journal of South American Earth Sciences, v. 61, p. 91107, doi: 10.1016/j.jsames.2015.01.001.Google Scholar
Houša, V., and De la Nuez, M., 1972, Hallazgo de ammonites del Kimmeridgiano en Hacienda el Americano (Pinar del Rio): Actas Academia de Ciencias de Cuba, Instituto de Geología y Paleontología, v. 2, p. 1416.Google Scholar
Houša, V., and De la Nuez, M., 1973, Las faunas de ammonites del Tithoniano у del Infracretaceo de Cuba: Actas Academia de Ciencias de Cuba, Instituto de Geología y Paleontología, v. 3, p. 1819.Google Scholar
Houša, V., and De la Nuez, M.L., 1975, Ammonite faunas of the Tithonian and lowermost Cretaceous of Cuba [abs.]: Colloque sur la limite Jurassique-Crétacé, Lyon-Neuchâtel, Mémoires de B.R.G.M, v. 86, p. 57.Google Scholar
Howarth, M.K., 1992, Tithonian and Berriasian ammonites from the Chia Gara Formation in northern Irak: Palaeontology, v. 35, p. 597655.Google Scholar
Howarth, M.K., 1998, Ammonites and nautiloids from the Jurassic and Lower Cretaceous of Wadi Hajar, southern Yemen: Bulletin of the Natural History Museum, London, Geology Series, v. 54, p. 33107.Google Scholar
Hyatt, A., 1889, Genesis of the Arietitidae: Smithsonian Contributions to Knowledge, v. 673, 238 p.Google Scholar
Hyatt, A., 1900, Cephalopoda, in Zittel, K.A. von. Text-book of Palaeontology (translation and edition by C.R. Eastman): New York, Macmillan & Company, v. 1, p. 502592.Google Scholar
Ibrahim, A.K., Carye, J., Latham, G., and Buffler, R.T., 1981, Crustal structure in Gulf of Mexico from OBS refraction and multichannel reflection data: American Association of Petroleum Geologist Bulletin, v. 65, p. 12071229.Google Scholar
International Commission on Zoological Nomenclature (ICZN) 1999, International Code of Zoological Nomenclature, 4th ed.: London, International Trust for Zoological Nomenclature, 156 p., http://www.nhm.ac.uk/hosted-sites/iczn/code (accessed 19 October 2017).Google Scholar
Imlay, R., 1937, Geology of the middle part of the Sierra de Parras, Coahuila, Mexico: Bulletin of the Geological Society of America, v. 48, p. 587630.Google Scholar
Imlay, R., 1939, Upper Jurassic ammonites from Mexico: Bulletin of the Geological Society of America, v. 50, p. 178.Google Scholar
Imlay, R., 1943, Upper Jurassic ammonites from the Placer De Guadalupe District, Chihuahua, Mexico: Journal of Paleontology, v. 17, p. 527543.Google Scholar
Imlay, R., 1952, Correlation of the Jurassic formations of North America exclusive of Canada: Bulletin of the Geological Society of America, v. 63, p. 953992.Google Scholar
Imlay, R., 1953, Las formaciones Jurásicas de México: Boletín de la Sociedad Geológica Mexicana, v. 26, p. 165.Google Scholar
Imlay, R., 1965, Jurassic marine faunal differentiation in North America: Journal of Paleontology, v. 39, p. 10231038.Google Scholar
Imlay, R., 1980, Jurassic paleobiogeography of the conterminous United States in its continental setting: Geological Survey Professional, Paper v. 1062, p. 1134.Google Scholar
Imlay, R., 1984, Jurassic ammonite successions in North America and biogeographical implications, in Westermann, G.E.G., ed., Jurassic–Cretaceous Biochronology and Biogeography of North America: Geological Association of Canada Special Paper 27, p. 112.Google Scholar
Imlay, R., and Jones, D.L., 1970, Ammonites from the Buchia zones in northwestern California and southwestern Oregon: Geological Survey Professional Paper 647–B, p. 159.Google Scholar
Iturralde-Vinent, M., 1994, Cuban geology: A new plate-tectonic synthesis: Journal of Petroleum Geology, v. 17, no. 1, p. 3970.Google Scholar
James, K.H., 2007, Structural geology: From local elements to regional synthesis, in Bundschuh, J., and Alvarado, G.E., eds., Central America: Geology, Resources and Hazards: London, Taylor and Francis, p. 277321, doi: 10.1201/9780203947043.ch11.Google Scholar
Krishna, J., 1983, Callovian-Albian ammonoid stratigraphy and paleobiogeography in the Indian sub-continent with special reference to the Tethys Himalaya: Himalayan Geology, v. 11, p. 4372.Google Scholar
Krishna, J., and Pathak, D.B., 1993, Late lower Kimmeridgian-lower Tithonian virgatosphinctins of India, evolutionary succession and biogeographical implications: Geobios Mémoire Spécial No. 15, p. 227238.Google Scholar
LaMaskin, T.A., 2012, Detrital zircon facies of Cordilleran terranes in western North America: GSA Today, v. 22, no. 3, p. 411, doi: 10.1130/GSATG142A.1.Google Scholar
Lapierre, H., Bosch, D., Dupuis, V., Polvé, M., Maury, R.C., Hernández, J., Monié, P., Yeghicheyan, D., Jaillard, E., Tardy, M., Mercier de Lépinay, B., Mamberti, M., Desmet, A., Keller, F., and Sénebier, F., 2000, Multiple plume events in the genesis of the peri-Caribbean Cretaceous oceanic plateau province: Journal of Geophysical Research, v. 105, p. 84038421. doi: 10.1029/1998JB900091.Google Scholar
Lawton, T.F., and Molina-Garza, R., 2014, U-Pb geochronology of the type Nazas Formation and superjacent strata, northeastern Durango, Mexico: Implications of a Jurassic age for continental-arc magmatism in north-central Mexico: Geological Society of America Bulletin, v. 126, p. 11811199, doi: 10.1130/B30827.1.Google Scholar
Lawton, T. F., Vega, F.J., Giles, K.A., and Rosales-Domínguez, C., 2001, Stratigraphy and origin of the La Popa Basin, Nuevo León and Coahuila, Mexico, in Bartolini, C., Buffler, R.T., and Cantú-Chapa, C., eds., The Western Gulf of Mexico Basin: Tectonics, Sedimentary Basins, and Petroleum Systems: American Association of Petroleum Geologists Memoir, v. 75, p. 219240.Google Scholar
Leach, W.E., 1817, Synopsis of the orders, families, and genera of the class Cephalopoda: The Zoological Miscellany, v. 3, p. 137141.Google Scholar
Lewis, J.F., Draper, G., Proenza, J.A., Espaillat, J., and Jiménez, J., 2006, Ophiolite-related ultramafic rocks (serpentinites) in the Caribbean region: A review of their occurrence, composition, origin, emplacement and Ni Laterite Soil Formation: Geologica Acta, v. 4, p. 237263, doi: 10.1344/105.000000368.Google Scholar
Lewy, Z., 2002, The function of the ammonite fluted septal margins: Journal of Paleontology, v. 76, p. 6369, doi: 10.1666/0022-3360(2002)076<0063:TFOTAF>2.0.CO;2.2.0.CO;2.>Google Scholar
López-Infanzón, M., 1986, Petrología y radiometría de rocas ígneas y metamórficas de México: Boletín de la Asociación Mexicana de Geólogos Petroleros, v. 38, p. 5998.Google Scholar
López-Palomino, I., and Piña-Arce, M., 2007, Formación Pimienta: Léxico Estratigráfico: México City, Servicio Geológico Mexicano, 5 p.Google Scholar
López-Ramos, E., 1985, Geología de México, Volume 2, Edición Escolar: México City, Instituto de Geología, Universidad Nacional Autónoma de México, 454 p.Google Scholar
Magoon, L.B., Hudson, T.L., and Cook, H.E., 2001, Pimienta-Tamabra (!)—A giant supercharged petroleum system in the southern Gulf of Mexico, onshore and offshore Mexico, in Bartolini, C., Buffler, R.T., and Cantú-Chapa, A., eds., The Western Gulf of Mexico Basin: Tectonics, Sedimentary Basins, and Petroleum Systems: American Association of Petroleum Geologists Memoir 75, p. 83125.Google Scholar
Malinowska, L., 1989, Biostratigraphy and paleozoogeography of the lowermost Tithonian in the Extra-Carpathian Poland: Bulletin of the Polish Academy of Sciences, Earth Sciences, v. 37, p. 125.Google Scholar
Mancini, E.A., Badali, M., Puckett, T.M., Llinas, J.C., and Parcell, W.C., 2001, Mesozoic carbonate petroleum systems in the northeastern Gulf of Mexico area, in Fillon, R.H., Rosen, N.C., Weimer, P., Lowrie, A., Pettingill, H., Phair, R.L., Roberts, H.H., and van Hoorn, B., eds., Petroleum Systems of Deep Water Basins: Global and Gulf of Mexico Experience, Program and Abstracts: Houston, Texas, 21st Bob F. Perkins Research Conference, Gulf Coast Section Society of Economic Paleontologists and Mineralogists Foundation, p. 27–28.Google Scholar
Mann, P., 2007, Overview of the tectonic history of northern Central America, in Mann, P., ed., Geologic and Tectonic Development of the Caribbean Plate Boundary in Northern Central America: The Geological Society of America Special Paper 428, p. 119, doi: 10.1130/2007.2428(01).Google Scholar
Mann, P., Rogers, R.D., and Gahagan, L., 2007, Overview of plate tectonic history and its unresolved tectonic problems, in Bundschuh, J., and Alvarado, G., eds., Central America: Geology, Resources, and Hazards: London, Taylor and Francis, p. 201238.Google Scholar
Mariotti, N., Nicosia, U., Pallini, G., and Schiavinotto, F., 1979, Kimmeridgiano recifale presso Case Canepine (M. Martani, Umbria): Ipotesi paleogeografiche: Geologica Romana, v. 18, p. 293313.Google Scholar
Martini, M., Mori, L., Solari, L., and Centeno-García, E., 2011, Sandstone provenance of the Arperos Basin (Sierra de Guanajuato, central Mexico): Late Jurassic–Early Cretaceous back-arc spreading as the foundation of the Guerrero terrane: The Journal of Geology, v. 119, p. 597617, doi: 10.1086/661989.Google Scholar
Martini, M., Fitz, E., Solari, L., Camprubi, A., Hudleston, P.J., Lawton, T.F., Tolson, G., and Centeno-García, E., 2012, The Late Cretaceous fold-thrust belt in the Peña de Bernal-Tamazunchale area and its possible relationship to the accretion of the Guerrero Terrane, in Aranda-Gómez, J.J., Tolson, G., and Molina-Garza, R.S., eds., The Southern Cordillera and Beyond: Geological Society of America Field Guide 25, p. 1938, doi: 10.1130/2012.0025(02).Google Scholar
Marton, G.L., and Buffler, R.T., 1999, Jurassic–Early Cretaceous tectono-paleogeographic evolution of the southeastern Gulf of Mexico Basin, in Mann, P., ed., Caribbean Basins: Sedimentary Basins of the World, v. 4: Amsterdam, Elsevier Science, p. 6391.Google Scholar
Mauel, D.J., Peryam, T., Lawton, T.F., Amato, J., and González-León, C., 2005, Sedimentary basins of the backarc region in north-central Sonora, Mexico: A record of Late Jurassic extension and Early Cretaceous arc accretion: Geosphere, v. 25, p. 166167.Google Scholar
Mauel, D.J., Lawton, T.F., González-León, C., Iriondo, A., and Amato, J.M., 2011, Stratigraphy and age of Upper Jurassic strata in north-central Sonora, Mexico: Southwestern Laurentian record of crustal extension and tectonic transition: Geosphere, v. 7, p. 390414, doi: 10.1130/GES00600.1.Google Scholar
Menéses-Rocha, J.J., 2001, Tectonic evolution of the Ixtapa Graben, an example of a strike-slip basin in southeastern Mexico: Implications for regional petroleum systems, in Bartolini, C., Buffler, R.T., and Cantú-Chapa, A., eds., The Western Gulf of Mexico Basin: Tectonics, Sedimentary Basins, and Petroleum Systems: American Association of Petroleum Geologists Memoir 75, p. 183216.Google Scholar
Mickus, K., Stern, R.J., Keller, G.R., and Anthony, E.Y., 2009, Potential field evidence for a volcanic rifted margin along the Texas Gulf Coast: Geology, v. 37, p. 387390, doi: 10.1130/G25465A.1.Google Scholar
Mills, R.A., 1998, Carbonate detritus and mylonite zones in Guerrero, Mexico and northern Honduras: New evidence for detachment of the Chortis block from southern Mexico: Journal of South American Earth Sciences, v. 11, p. 291307.Google Scholar
Moore, G.W., and Castillo, L.D., 1974, Tectonic evolution of the southern Gulf of Mexico: Geological Society of America Bulletin, v. 85, p. 607618.Google Scholar
Moretti, I., Tenreyro-Perez, R., Linares, E., Lopez, J.G., Letouzey, J., Magnier, C., Gaumet, F., Lecomte, J.C., Lopez, J.O., and Zimine, S., 2003, Petroleum system of the Cuban northwest offshore zone, in Bartolini, C., Buffler, R.T., and Blickwede, J.F., eds., The Circum-Gulf of Mexico and the Caribbean—Hydrocarbon Habitats, Basin Formation, and Plate Tectonics: American Association of Petroleum Geologists Memoir, v. 79, p. 125128.Google Scholar
Muñoz Cisneros, R., Lara Rodríguez, J., Marino Castañón, A., Chávez Carcini, J.L., Román Ramos, J.R., Clara Valdés, C., Hernández Romano, U., Navarro Baca, F., and Gómez Rodríguez, R.D., 2013, Provincia Petrolera Sabinas-Burro-Picachos: Mexico City, PEMEX Exploración y Producción, 31 p.Google Scholar
Myczyński, R., 1989, Ammonite biostratigraphy of the Tithonian of western Cuba: Annales Societatis Geologorum Poloniae, v. 59, p. 43125.Google Scholar
Myczyński, R., 1998, Los primeros Hybonoticeras (Ammonitina) del Tithoniano de Cuba: Terra Nostra, v. 98, no. 5, p. 114115.Google Scholar
Myczyński, R., 1999, Some ammonite genera from the Tithonian of western Cuba and their palaeobiogeographic importance: Studia Geologica Polonica, v. 114, p. 93112.Google Scholar
Neumayr, M., 1873, Die Fauna der Schichen mit Aspidoceras acanthicum : Abhanlungen der Kaiserlich-Königlichen Geologischen Reichsanstalt, v. 5, p. 141257.Google Scholar
Neumayr, M., 1878, Ueber unvermittelt auftretende Cephalopodentypen im Jura Mittel-Europa’s: Jahrbuch der Kaiserlich-Königlichen Geologischen Reichsanstalt, v. 1, no. 28, p. 3780.Google Scholar
Ohmert, W., and Zeiss, A., 1980, Ammoniten aus den hangenden Bankkalken (Unter-Tithon) der Schwäbischen Alb (Südwestdeutschland): Abhandlungen des Geologischen Landesamtes, Baden-Württemberg, v. 9, p. 550.Google Scholar
Olóriz, F., 1978, Kimmeridgiense–Tithonico inferior en el sector central de las Cordilleras Béticas (Zona Subbética): Paleontología, bioestratigrafía [Ph.D. dissertation]: Granada, Universidad de Granada, 758 p.Google Scholar
Olóriz, F., 1986, Paleogeography and ammonites in the Upper Jurassic, outlines for a pattern, in Pallini, C., coord., Commemorazione Di Raffaele Piccinici, La Stampa Belli/Pesaro, Atti I Convengo Internazionale Fossili, Evoluzione, Ambiente, Pergola, 1984: Pergola, Italy, Comitato Centenario Raffaele Piccinini, p. 19.Google Scholar
Olóriz, F., 1988, Ammonites and dispersal biogeography, is that all?, in Rocha, R.B., and Soares, A.F., eds., 2nd International Symposium on Jurassic Stratigraphy, Lisboa, 1987, Proceedings, Volume 1: Lisbon, Instituto Nacional de Investigação Cientifica, Centro de Estratigrafía e Paleobiología da Universidade Nova de Lisboa and Centro de Geociências da Universidade Coimbra, p. 563580.Google Scholar
Olóriz, F., 1990, Ammonite phenotypes and ammonite distribution: Notes and comments, in Pallini, C., Cecca, F., Cresta, S., and Santantonio, M., coords., Commemorazione di Raffaele Piccinici, Atti II Convengo Internazionale Fossili, Evoluzione, Ambiente, Pergola, 1987: Pergola, Italy, Comitato Centenario Raffaele Piccinini, p. 417426.Google Scholar
Olóriz, F., 1992, North-central and eastern Mexico, in Westermann, G.E.G., ed., The Jurassic of the Circum–Pacific, Part 3, Regional Geology and Stratigraphy, Meso-America: New York, Cambridge University Press, p. 100107.Google Scholar
Olóriz, F., and Villaseñor, A.B., 1999, New microconchiate Hybonoticeras from Mexico: Geobios, v. 32, p. 561573.Google Scholar
Olóriz, F., and Villaseñor, A.B., 2010, Ammonite biogeography: From descriptive to dynamic, ecological interpretations, in Tanabe, K., Shigeta, Y., Sasaki, T., and Hirano, H., eds., Cephalopods—Present and Past: Tokyo, Tokai University Press, p. 253265.Google Scholar
Olóriz, F., Marques, B., and Moliner, L., 1988, The Platform effect: An example from Iberian shelf areas in the lowermost Kimmeridgian, in Rocha, R.B., and Soares, A.F., eds., 2nd International Symposium on Jurassic Stratigraphy, Lisboa, 1987, Proceedings, Volume 1: Lisbon, Instituto Nacional de Investigação Cientifica, Centro de Estratigrafía e Paleobiología da Universidade Nova de Lisboa and Centro de Geociências da Universidade Coimbra, p. 543562.Google Scholar
Olóriz, F., Lara, L., De La Mora, A., Villaseñor, A.B., and González-Arreola, C., 1993, The Kimmeridgian/Tithonian boundary in the ‘Barranquito del Alacrán’ section at Cuencamé (Durango, Mexico): Its biostratigraphy and ecostratigraphic interpretation: Acta Geologica Polonica, v. 43, p. 273288.Google Scholar
Olóriz, F., Caracuel, J.E., Ruiz-Heras, J.J., Rodr�guez-Tovar, F.J., and Marques, B., 1996, Ecostratigraphic approaches, sequence stratigraphy proposals and block tectonics: Examples from epioceanic swell areas in south and east Iberia: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 121, p. 273295.Google Scholar
Olóriz, F., Villaseñor, A.B., González-Arreola, C., and Westermann, G.E.G., 1999, Ammonite biostratigraphy and correlations in the Upper Jurassic–lowermost Cretaceous La Caja Formation of north-central Mexico (Sierra de Catorce, San Luis Potosí), in Olóriz, F., and Rodríguez-Tovar, F.J., eds., Advancing Research on Living and Fossil Cephalopods: New York, Kluwer Academic/Plenum Publishers, p. 463492.Google Scholar
Olóriz, F., Villaseñor, A.B., and González-Arreola, C., 2000, Geographic control on phenotype expression: The case of Hybonoticeras mundulum (Oppel) from the Mexican Altiplano: Lethaia, v. 33, p. 157174, doi: 10.1080/00241160025100035.Google Scholar
Olóriz, F., Palmqvist, P., and Pérez-Claros, J.A., 2002, Morphostructural constraints, and phylogenetic overprint on sutural frilling in Late Jurassic ammonites: Lethaia, v. 35, p. 158168, doi: 10.1111/j.1502-3931.2002.tb00076.x.Google Scholar
Olóriz, F., Villaseñor, A.B., and González-Arreola, C., 2003, Major lithostratigraphic units in land-outcrops of north-central Mexico and the subsurface along the northern rim of Gulf of Mexico Basin (Upper Jurassic–lowermost Cretaceous): A proposal for correlation of tectono-eustatic sequences: Journal of South American Earth Sciences, v. 16, p. 119142, doi: 10.1016/S0895-9811(03)00049-X.Google Scholar
Olóriz, F., Reolid, M., and Rodríguez-Tovar, F.J., 2006, Approaching trophic structure in Late Jurassic neritic shelves: A western Tethys example from southern Iberia: Earth-Science Reviews, v. 79, p. 101139, doi: 10.1016/j.earscirev.2006.06.005.Google Scholar
Oppel, A., 1863, Über jurassische Cephalopoden: Pal�ontologische Mittheilungen aus dem Museum des Koeniglich-Bayerischen Staates, Abt. 3, p. 163266.Google Scholar
Oppel, A., 1865, Die tithonische Etage: Zeitschrift der Deutschen Geologischen Gesellschaft, v. 17, p. 535558.Google Scholar
Ortega-Gutiérrez, F., Solari, L.A., Ortega-Obregón, C., Elías-Herrera, M., Martens, U., Morán-Icál, S., Chiquín, M., Keppie, J.C., Torres de León, R., and Schaaf, P., 2007, The Maya-Chortís boundary: A tectonostratigraphic approach: International Geology Review, v. 49, p. 9961024, doi: 10.2747/0020-6814.49.11.996.Google Scholar
Padilla y Sánchez, R.J., 2007, Evolución geológica del sureste mexicano desde el Mesozoico al presente en el contexto regional del Golfo de México: Boletín de la Sociedad Geológica Mexicana, v. 49, p. 1942.Google Scholar
Palafox, J.J., Mendoza, A., and Minjarez, V.A., 1992, Geología de la región de la Sierra Caracahuí, Sonora, México: Boletín del Departamento de Geología, Universidad de Sonora, v. 9, p. 1934.Google Scholar
Pathak, D.B., 1993, The first record of the ammonite genus Hybonoticeras from the Himalaya and its stratigraphic significance: Newsletters on Stratigraphy, v. 28, p. 121129.Google Scholar
Peña-Muñoz, M., 1964, Amonitas del Jurásico Superior y del Cretácico Inferior del extremo oriental del Estado de Durango, México: Paleontología Mexicana, v. 20, p. 134.Google Scholar
Pérez-Gutiérrez, R., Solari, L.A., Gómez-Tuena, A., and Valencia, V.A., 2009, El terreno Cuicateco: Cuenca oceánica con influencia de subducción del Cretácico Superior en el sur de México?: Nuevos datos estructurales, geoquímicos y geocronológicos: Revista Mexicana de Ciencias Geológicas, v. 26, p. 222242.Google Scholar
Peterson, A.C., 1983, Petroleum geology and resources of southeastern Mexico, northern Guatemala and Belize: Geological Survey Circular, v. 760, p. 144.Google Scholar
Petróleos Mexicanos (PEMEX), 1988, Estratigrafía de la República Mexicana, Mesozoico: México D.F., Subdirección de Producción Primaria, Coordinación ejecutiva de Exploración, Informe Inédito, 216 p.Google Scholar
Pindell, J.L., and Kennan, L., 2001, Kinematic evolution of the Gulf of Mexico and Caribbean, in Fillon, R.H., Rosen, N.C., Weimer, P., Lowrie, A., Pettingill, H., Phair, R.L., Roberts, H.H., and van Hoorn, B., eds., Petroleum Systems of Deep Water Basins: Global and Gulf of Mexico Experience, Program and Abstracts: Houston, Texas, 21st Bob F. Perkins Research Conference, Gulf Coast Section Society of Economic Paleontologists and Mineralogists Foundation, p. 193–220.Google Scholar
Pineda-Acevedo, J.L., 2001, Exploración geológica superficial de semidetalle con objetivo petrolero en una porción de la Sierra Madre Oriental (Hoja de Teziutlán E14B15) [Undergraduate dissertation]: Mexico D.F., Universidad Nacional Autónoma de México, 79 p.Google Scholar
Prost, G., and Aranda, M., 2001, Tectonics and hydrocarbon systems of the Veracruz Basin, in Bartolini, C., Buffler, R.T., and Cantú-Chapa, A., eds., The Western Gulf of Mexico Basin: Tectonics, Sedimentary Basins, and Petroleum Systems: American Association of Petroleum Geologists Memoir 75, p 271291.Google Scholar
Pszczółkowski, A., and Myczyński, R., 2003, Stratigraphic constraints on the Late Jurassic–Cretaceous paleotectonic interpretations of the Placetas Belt in Cuba, in Bartolini, C., Buffler, R.T., and Blickwede, J., eds., The Circum-Gulf of Mexico and the Caribbean: Hydrocarbon Habitats, Basin Formation, and Plate Tectonics: American Association of Petroleum Geologists Memoir, v. 79, p. 545581.Google Scholar
Pszczółkowski, A., and Myczyński, R., 2010, Tithonian–early Valanginian evolution of deposition along the proto-Caribbean margin of North America recorded in Guaniguanico successions (western Cuba): Journal of South American Earth Sciences, v. 29, p. 225253, https://doi.org/10.1016/j.jsames.2009.07.004.Google Scholar
Quenstedt, F.A., 1857, Der Jura: Tübingen, Laupp, 842 p.Google Scholar
Quenstedt, F.A., 1887–1888, Die Ammoniten des Schwäbischen Jura, III Band, Der Weisse Jura: Stuttgart, E. Schweizerbart’sche Verlagshandlung (E. Koch), p. 817994. (1887), p. 945–1140 (1888).Google Scholar
Quezada-Muñetón, J.M., 1983, Las formaciones San Ricardo y Jericó del Jurásico Medio-Cretácico inferior en el SE de México: Boletín de la Asociación Mexicana de Geólogos Petroleros, v. 35, p. 3764.Google Scholar
Quezada-Muñetón, J.M., and Ferrusquía-Villafranca, I., 2013, Gloria Alencáster y su influjo en la investigación geológica de Chiapas: Las discontinuidades geológicas mesozoicas de la sierra de Chiapas y su significación regional, un ejemplo: Paleontología Mexicana, v. 63, p. 90115.Google Scholar
Radelli, L., and Calmus, T., 1988, Suture et nappes d’âge Nevadien sur la bordure sud du Colorado (Colorado, Arizona, U.S.A., Sonora, Mexique): Géologie Alpine, v. 64, p. 105111.Google Scholar
Rafinesque, C.S., 1815, Analyse de la Nature ou Tableau de l’Univers et des Corps Organisés, etc.: Palerme, Jean Barravecchia, 223 p.Google Scholar
Rees, P.M., Ziegler, A.M., and Valdes, P.J., 2000, Jurassic phytogeography and climates: New data and model comparisons, in Huber, B.T., Macleod, K.G., and Wing, S.L., eds., Warm Climates in Earth History: Cambridge, UK, Cambridge University Press, p. 297318.Google Scholar
Rees, P.M., Noto, C.R., Parrish, J.M., and Parrish, J.T., 2004, Late Jurassic climates, vegetation, and dinosaur distributions: The Journal of Geology, v. 112, p. 643653.Google Scholar
Ricou, L.E., 1996, The plate tectonic history of the past Tethys Ocean, in Nairn, A.E.M., Ricou, L.E., Vrielynck, B., and Dercourt, J., eds., The Oceans Basins and Margins, Volume 8, The Tethys Ocean: New York, Plenum Press, p. 370.Google Scholar
Rodríguez-Viera, M., Brey del Rey, D., Blanco Bustamante, S., Rodríguez-Loeches, J., and Villavicencio, B., 1998, Reservorios del Jurásico Superior en yacimientos de la Cuenca Norte Cubana, in Geología y Minería ’98, Memorias I: Habana, Cuba, Centro Nacional de Información Geológica, p. 634637.Google Scholar
Rogers, D.R., 2003, Jurassic-Recent tectonic and stratigraphic history of the Chortis block of Honduras and Nicaragua (northern Central America) [PhD Dissertation]: Austin, University of Texas, 262 p.Google Scholar
Rogers, R.D., Mann, P., and Emmet, P.A., 2007, Tectonic terranes of the Chortis block based on integration of regional aeromagnetic and geologic data: Geological Society of America Special Papers 428, p. 6588, doi: 10.1130/2007.2428(04).Google Scholar
Rogov, M., and Zakharov, V., 2009, Ammonite- and bivalve-based biostratigraphy and Panboreal correlation of the Volgian Stage: Science in China, Series D, Earth Sciences, v. 52, p. 18901909, doi: 10.1007/s11430-009-0182-0.Google Scholar
Roll, A., 1931, Die Stratigraphie des öberen Malm im Lauchertgebiet (Schw. Alb) als Unterlage für tektonische Untersuchngen: Abhandlungen der Preussischen Geologischen Landesanstalt, n.f., no. 135, 164 p.Google Scholar
Roman, F., 1938, Les Ammonites Jurassiques et Crétacées: Essai de Gênera: Paris, Masson, 554 p.Google Scholar
Rosaz, T., 1989, From the North-American Cordillera to the Mexican Sierras Madres—Geology of southwestern New Mexico (USA), in Plauchut, B., Tardy, M., Blanchet, R., Zimmermann, M., Cabezas, P., Rosaz, T., and Sosson, M., eds., Geological Study of the North American Cordillera: Bulletin – Centres de Recherches-Explorations-Production Elf Aquitaine, v. 13, p. 247275.Google Scholar
Rosencrantz, E., 1990, Structure and tectonics of the Yucatan Basin, Caribbean Sea, as determined from seismic reflection studies: Tectonics, v. 9, p. 10371059.Google Scholar
Ross, C.A., Moore, G.T., and Hayashida, D.N., 1992, Late Jurassic paleoclimate simulation—Paleoecological implications for ammonoid provinciality: Palaios, v. 7, p. 487507.Google Scholar
Rossi, F., 1984, Ammoniti del Kimmeridgiano superiore—Berriasiano inferiore del Passo del Furlo (Appenino Umbro-Marchigiano): Memorie della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano, v. 23, p. 75136.Google Scholar
Rueda-Gaxiola, J., 2003, The origin of the Gulf of Mexico Basin and its petroleum subbasins in Mexico, based on Red Bed and salt palynostratigraphy, in Bartolini, C., Buffler, R.T., and Blickwede, J., eds., The Circum-Gulf of Mexico and the Caribbean: Hydrocarbon Habitats, Basin Formation and Plate Tectonics: American Association of Petroleum Geologists Memoirs 79, p. 246282.Google Scholar
Sáenz-Pita, M.R., and López-Palomino, I., 2011, Formación Chinameca: Léxico Estratigráfico: México D.F., Servicio Geológico Mexicano, 4 p.Google Scholar
Salfeld, H., 1919, Über einige Aspidoceraten aus dem nordwestdeutschen, nordfranzösischen und englischen Oberoxford und Kimmeridge mit Bemerkungen über die Familie der Aspidoceratinae, Zittel: Jahresbericht des Niedersächsischen Geologischen Vereins, v. 12, p. 2131.Google Scholar
Salvador, A., 1987, Late Triassic-Jurassic paleogeography and origin of Gulf of Mexico Basin: American Association of Petroleum Geologists Bulletin, v. 71, p. 419451.Google Scholar
Salvador, A., 1991, Triassic–Jurassic, in Salvador, A., ed., The Gulf of Mexico Basin, Volume J., The Geology of North America: Boulder, Colorado, Geological Society of America, p. 131180.Google Scholar
Santamaría-Orozco, D., and Horsfield, D., 2003, Gas generation potential of upper Jurassic (Tithonian) source rocks in the Sonda de Campeche, Mexico, in Bartolini, C., Buffler, R.T., and Blickwede, J., eds., The Circum-Gulf of Mexico and the Caribbean: Hydrocarbon Habitats, Basin Formation, and Plate Tectonics: American Association of Petroleum Geologists Memoir 79, p. 349363.Google Scholar
Santamaría-Orozco, D., di Primio, R., Pickel, W., Holguín, N., and Horsfield, B., 1995, Organic facies and maturity of Tithonian source rocks from the Sonda de Campeche, Mexico, in Grimalt, J.O., and Dorrosoro, C., eds., Developments and applications to energy, climate, environment and human history, in Selected papers from the 17th International Meeting of Organic Geochemistry (EGOA), San Sebastian, Spain: Organic Geochemistry, Special Issue, p. 152–154.Google Scholar
Sapunov, I.G., 1979, Les fossiles de Bulgarie 3, Jurassique Supérieur, Ammonoidea: Sofia, Academie Bulgare des Sciences, p. 10237.Google Scholar
Sarti, C., 1984, Fauna e biostratigrafia del Rosso Ammonitico del Trentino Centrale (Kimmerigiano–Titoniano): Bolletino della Società Paleontologica Italiana, v. 23, p. 473514.Google Scholar
Sarti, C., 1985, Biostratigraphie et faune a ammonites du Jurassique supérieur de la Plate-Forme Atesine (Formation du Rosso Ammonitico Veronais): Revue de Paléobiologie, v. 4, p. 321330.Google Scholar
Sarti, C., 1993, Il Kimmeridgiano delle Prealpi Veneto-Trentine: Fauna e Biostratigrafîa: Memorie del Museo Civico di Storia Naturale di Verona, ser. 2, Scienze della Terra, v. 5, p. 9145.Google Scholar
Schenk, J.C., 2010, Geologic assessment of undiscovered oil and gas resources of the north Cuba Basin, Cuba: U.S. Geological Survey Open-File Report 2010–1029, https://pubs.usgs.gov/of/2010/1029/pdf/OF10-1029.pdf (accessed 19 October 2017), 1 p.Google Scholar
Schindewolf, O.H., 1925, Entwurf einer Systematik der Perisphincten: Neues Jahrbuch fur Mineralogie, Geologie und Paläontologie, v. 52, B, p. 309343.Google Scholar
Schindewolf, O.H., 1966, Studien zur Stammesgeschichte der Ammoniten, Lief. V: Abhandlungen der Akademie der Wissenschaften und der Literatur Mathematischen-Naturwissenschaftlichen Klasse, v. 11, p. 513640.Google Scholar
Schlamp, V., 1991, Malm-Ammoniten: Stuttgart, Germany, Goldschneck-Verlag, 184 p.Google Scholar
Schlegelmilch, R., 1994, Die Ammoniten des süddeutschen Malms: Ein Bestimmungsbuch für Geowissenschaftler und Fossiliensammler: Stuttgart, Germany, Gustav Fischer Verlag, 297 p.Google Scholar
Schweigert, G., 1993, Subboreale Faunenelemente (Ammonoidea) im oberen Weissjura (Oberkimmeridgium) der Schwäbischen Alb: Stuttgart, Profil, v. 5, p. 141155.Google Scholar
Schweigert, G., 1998, The ammonite fauna of the Nusplingen Lithographic Limestone (late Kimmeridgian, beckeri Zone, ulmense Subzone, SW Germany): Stuttgarter Beiträge zür Naturkunde, ser. B, v. 267, p. 161.Google Scholar
Schweigert, G., 2000, New biostratigraphic data from the Kimmeridgian/Tithonian boundary beds of SW Germany: GeoResearch Forum, v. 6, p. 195202.Google Scholar
Schweigert, G., Krishna, J., Pandey, B., and Pathak, D.B., 1996, A new approach to the correlation of the upper Kimmeridgian beckeri Zone across the Tethyan Sea: Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, v. 202, p. 345373.Google Scholar
Schweigert, G., Zeiss, A., and Westermann, G.E.G., 2012, The Gravesia homeomorphs from the latest Kimmeridgian of Mombasa, Kenya: Revue de Paléobiologie, Volume Spécial, v. 11, p. 1325.Google Scholar
Scotese, C.R., 2001, Atlas of Earth History, Volume 1, Paleogeography: Arlington, Texas, PALEOMAP Project, 52 p., http://www.scotese.com/late1.htm (accessed 19 October 2017).Google Scholar
Scott, R.W., 1984, Mesozoic biota and depositional systems of the Gulf of Mexico-Caribbean Region: Geological Association of Canada Special Paper 27, p. 4964.Google Scholar
Sedlock, R.L., Ortega-Gutierrez, F., and Speed, R. C., 1993, Tectonostratigraphic terranes and tectonic evolution of Mexico: Geological Society of America Special Paper 278, 153 p.Google Scholar
Sellwood, B.W., and Valdes, P.J., 2006, Mesozoic climates: General circulation models and the rock record: Sedimentary Geology, v. 190, p. 269287, doi: 10.1016/j.sedgeo.2006.05.013.Google Scholar
Silva-Romo, G., 2008, Guayape-Papalutla fault system: A continuous Cretaceous structure from southern Mexico to the Chortís block? Tectonic implications: Geology, v. 36, p. 7578, doi: 10.1130/G24032A.1.Google Scholar
Sosson, M., 1989, Superimposed tectonics in southeast Arizona (USA): New data on the Metamorphic Core Complexes, in Plauchut, B., Tardy, M., Blanchet, R., Zimmermann, M., Cabezas, P., Rosaz, T., and Sosson, M., eds., Geological Study of the North American Cordillera: Bulletin – Centres Recherche Exploration-Production Elf-Aquitaine, v. 13, p. 277295.Google Scholar
Spath, F.L., 1924, On the Blake collection of ammonites from Kachh: Palaeontologia Indica, n. ser., v. 9, no. 1, p. 171.Google Scholar
Spath, F.L., 1925, Ammonites and Aptychi, in Wyllie, B.K.W., and Smellei, W.R., eds., On the collections of fossils and rocks from Somaliland, Part 7: Monographs of the Geological Department of the Hunterian Museum, Glasgow University, v. 4, p. 111164.Google Scholar
Spath, F.L., 1927–1933, Revision of the cephalopod fauna of Kachh (Cutch): Palaeontologia Indica, n. ser., v. 9, part. 1–6, 945 p.Google Scholar
Spath, F.L., 1930, The Jurassic ammonite faunas of the neighbourhood of Mombasa, in McKinnon Wood, M., ed., Monographs of the Geological Department of the Hunterian Museum, Glasgow University: 4th Report on Geological Collections from the Coastlands of Kenya Colony, v. 3, p. 13–71.Google Scholar
Spath, F.L., 1931, Revision of the Jurassic cephalopod fauna of Kachh (Cutch): Palaeontologia Indica, n. ser., v. 9, part. 5, p. 551658.Google Scholar
Steinmann, G., 1890, Cephalopoda, in Steinmann, G., and Döderlein, L., eds., Elemente der Paläontologie: Leipzig, Engelmann, p. 344475.Google Scholar
Stephanov, J., 1959, [On the presence of genus Hybonoticeras Breistroffer, 1947 in the Kimmeridge layers of western Bulgaria]: Travaux sur la Geologie de Bulgarie, ser. Paleontologie, v. 1, p. 95106.Google Scholar
Stern, R.J., and Dickinson, W.R., 2010, The Gulf of Mexico is a Jurassic backarc basin: Geosphere, v. 6, p. 739754, doi: 10.1130/GES00585.1.Google Scholar
Talavera-Mendoza, O., Ruiz, J., Gehrels, G.E., Valencia, V.A., and Centeno-García, E., 2007, Detrital zircon U/Pb geochronology of southern Guerrero and western Mixteca arc successions (southern Mexico): New insights for the tectonic evolution of southwestern North America during the late Mesozoic: GSA Bulletin, v. 119, nos. 9–10, p. 10521065, doi: 10.1130/B26016.1.Google Scholar
Tardy, M., Blanchet, R., and Zimmermann, M., 1989, The Texas and Caltam lineaments from the American Cordillera to the Mexican Sierras Madres: Nature, origin and structural evolution, in Plauchut, B., Tardy, M., Blanchet, R., Zimmermann, M., Cabezas, P., Rosaz, T., and Sosson, M., eds., Geological Study of the North American Cordillera: Bulletin – Centres Recherche Exploration-Production Elf-Aquitaine, v. 13, p. 219227.Google Scholar
Todd, V.R., Erskine, B.G., and Morton, D.M., 1988, Metamorphic and tectonic evolution of the northern Peninsular Ranges Batholith, southern California, in Ernst, W.G., ed., Metamorphism and Crustal Evolution of the Western United States: Einglewood Cliffs: New Jersey, Prentice Hall, (Rubey Volume 7), p. 894937.Google Scholar
Torres de León, R., Solari, L.A., and Martens, U., 2007, Geología, petrografía y geocronología de unidades de basamento del bloque Chortís, en el este de Guatemala: Primeros resultados, in GeoChortis, Simposio: La Conexión Chortis-Sur de México en el Tiempo y en el Espacio, Juriquilla, Querétaro, México, 8–10 de Agosto, 2007: Universidad Nacional Autónoma de México, abstract: GC2007-25P, p. 26.Google Scholar
Trauth, F., 1927, Aptychenstudien I: Über die Aptychen im Allgemeinen: Annalen des Naturhistorischen Museums in Wien, v. 41, p. 171259.Google Scholar
Uhlig, F., 1910, Himalayan fossils—The fauna of the Spiti Shales: Memoirs of the Geological Survey of India: Palaeontologia Indica, v. 4, p. 133306.Google Scholar
Valduga, A. 1954, Ammoniti ed Aptici neogurasici dell’Ogaden e della Somalia sud-occidentale: Palaeontographia Italica, v. 48, ser. 18, p. 140.Google Scholar
Vega-Granillo, R., Salgado-Souto, S., Herrera-Urbina, S., Valencia, V., and Vidal-Solano, J.R., 2011, Metamorphism and deformation in the El Fuerte region: Their role in the tectonic evolution of NW Mexico: Revista Mexicana de Ciencias Geológicas, v. 28, p. 1023.Google Scholar
Verma, H., and Westermann, G.E.G., 1973, The Tithonian (Jurassic) ammonite fauna and stratigraphy of Sierra Catorce, San Luis Potosí, Mexico: Bulletins of American Paleontology, v. 63, p. 107320.Google Scholar
Verma, H., and Westermann, G.E.G., 1984, The ammonoid fauna of the Kimmeridgian-Tithonian boundary beds of Mombasa, Kenya: Royal Ontario Museum, Life Sciences Division, Contributions, v. 135, 116 p.Google Scholar
Vigh, G., 1984, Die biostratigraphische Auswertung einiger Ammoniten-Faunen aus dem Tithon des Bakonygebirges sowie aus dem Tithon—Berrias des Gerecsegebirges: Annales Instituti Geologici Publici Hungarici, v. 67, p. 1210.Google Scholar
Viland, J.C., Henry, B., Calix, R., and Diaz, C., 1996, Late Jurassic deformation in Honduras: Proposals for a revised regional stratigraphy: Journal of South American Earth Sciences, v. 9, p. 153160.Google Scholar
Villaseñor, A.B., 1991, Aportaciones a la bioestratigrafía, basada en fauna de ammonites de la sucesión del Jurásico Superior (Kimmeridgiano-Tithoniano) del área de Mazapil, Zacatecas, México [Ph.D. dissertation]: Mexico D.F., Universidad Nacional Autónoma de México, 155 p.Google Scholar
Villaseñor, A.B., Olóriz, F., and González-Arreola, C., 2000, Recent advances in Upper Jurassic (Kimmeridgian–Tithonian) ammonite biostratigraphy from north-central Mexico: Based in new collected ammonite assemblages: GeoResearch Forum, v. 6, p. 249262.Google Scholar
Villaseñor, A.B., González-León, C. M., Lawton, T., and Aberhan, M., 2005, Upper Jurassic ammonites and bivalves from the Cucurpe Formation, Sonora (Mexico): Revista Mexicana de Ciencias Geológicas, v. 22, p. 6587.Google Scholar
Villaseñor, A.B., Olóriz, F., López Palomino, I., and López-Caballero, I., 2012, Updated ammonite biostratigraphy from Upper Jurassic deposits in Mexico: Revue de Paléobiologie, Volume Spécial 11, p. 249267.Google Scholar
Viniegra, O.F., 1971, Age and evolution of salt basins of southeastern Mexico: American Association of Petroleum Geologists Bulletin, v. 55, p. 478494.Google Scholar
Viniegra, O.F., 1981, Great carbonate bank of Yucatan, southern Mexico: Journal of Petroleum Geology, v. 3, p. 247278.Google Scholar
Waagen, W., 1869, Die Formenreihe des Ammonites subradiatus: Benecke’s Geognostische-Paläontologische Beiträge, v. 2, p. 181256.Google Scholar
Weissert, H., and Mohr, H., 1996, Late Jurassic climate and its impact on carbon cycling: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 122, p. 2743.Google Scholar
Westermann, G.E.G., 1996, Ammonoid life and habitat, in Landman, N.H., Tanabe, K., and Davis, R.A., eds., Ammonoid Paleobiology: New York, Plenum Press, p. 608710.Google Scholar
Westermann, G.E.G., and Tsujita, C.J., 1999, Life habits of ammonoids, in Savazzi, E., ed., Functional Morphology of the Invertebrate Skeleton: Chichester, UK, John Wiley and Sons, p. 299325.Google Scholar
Wierzbowski, A., 1994, Late Middle Jurassic to earliest Cretaceous stratigraphy and microfacies of the Czorsztyn Succession in the Spisz area, Pieniny Klippen Belt, Poland: Acta Geologica Polonica, v. 44, no. 3/4, p. 223249.Google Scholar
Williams-Rojas, C. T., and Hurley, N. F., 2001, Geologic controls on reservoir performance in Muspac and Catedral gas fields, southeastern Mexico, in C. Bartolini, R. T. Buffler, and A. Cantú-Chapa, eds., The Western Gulf of Mexico Basin: Tectonics, Sedimentary Basins, and Petroleum Systems: American Association of Petroleum Geologists Memoir 75, p. 443472.Google Scholar
Zeiss, A., 1968, Untersuchungen zur Paläontologie der Cephalopoden des Unter-Tithon der Südlichen Frankenalb: Bayerische Akademie der Wissenschaften Mathematisch-Naturwissenschaftliche, Klasse, Abhandlungen, n. ser., v. 132, 190 p.Google Scholar
Zeiss, A., 2001, Wenig bekannte Ammoniten aus dem Grenzbereich Oberkimmeridgium/Untertithonium der Südlichen Frankenalb: Archaeopteryx, v. 19, p. 5770.Google Scholar
Zeiss, A., 2003, The Upper Jurassic of Europe: Its subdivision and correlation: Geological Survey of Denmark and Greenland Bulletin, v. 1, p. 75114.Google Scholar
Zell, P., Beckmann, S., and Stinnesbeck, W., 2014, Age and depositional conditions of the marine vertebrate concentration Lagerstätte at Gomez Farías, southern Coahuila, Mexico: Journal of South American Earth Sciences, v. 56, p. 91109, doi: 10.1016/j.jsames.2014.08.009.Google Scholar
Ziegler, B., 1959, Idoceras und verwandte Ammoniten-Gattungen im Oberjura Schwabens: Eclogae Geologicae Helvetiae, v. 52, p. 1956.Google Scholar
Ziegler, B., 1967, Ammoniten-Ökologie am Beispiel des Oberjura: Geologische Rundschau, v. 56, p. 439464.Google Scholar
Ziegler, A.M., Eshel, G., McAllister Rees, P., Rothfus, T.A., Rowley, D.B., and Sunderlin, D., 2003, Tracing the tropics across land and sea: Permian to present: Lethaia, v. 36, p. 227254, doi: 10.1080/00241160310004657.Google Scholar
Zieten, C.H., 1830–1833, Die Versteinerungen Württembergs: Stuttgart, Schweizerbart, 102 p.Google Scholar
Zittel, K.A. von, 1868, Die Cephalopoden der Stramberger Schichten: Paläontologische Mitteilungen aus dem Museum Koeniglich-Bayerischen Staates, v. 2, no. 1, p. 33118.Google Scholar
Zittel, K.A. von, 1884, Cephalopoda, in Zittel, and K.A. von. Handbuch der Paläontologie, Volume 1: Munich, Germany, R. Oldemburg, p. 329522.Google Scholar
Zittel, K.A. von, 1895, Grundzüge der Paläontologie (Paläozoologie): Munich, Germany, R. Oldenbourg, 971 p.Google Scholar