Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-24T18:33:19.178Z Has data issue: false hasContentIssue false

A new species of Hypolophites (Chondrichthyes, Myliobatiformes) from the Lower Clayton Limestone Unit of the Midway Group (Paleocene), near Malvern, Arkansas, USA

Published online by Cambridge University Press:  16 December 2019

Harry M. Maisch IV*
Affiliation:
Department of Environmental Science, William Paterson University, 300 Pompton Road, Wayne, NJ, 07470,

Abstract

A new species of Hypolophites (Chondrichthyes, Myliobatiformes) is described from an assemblage of isolated pavement teeth recovered from the Lower Clayton Limestone Unit of the Midway Group (Paleocene) near Malvern, Arkansas. These teeth were collected from several localized lag deposits containing an abundance of chondrichthyan and osteichthyan teeth, invertebrate remains, and trace fossils indicative of a marginal-shallow marine depositional environment. To date, only four additional species of Hypolophites have been reported from Paleocene deposits that occur along the west coast of central-northern Africa and in central New Jersey, USA. The identification of Hypolophites beckeri n. sp. in southwestern Arkansas extends the distribution of this biostratigraphically significant genus ~1,750 km westward into the Mississippi Embayment and Gulf Coastal Plain of the USA. The distribution of Hypolophites species during the Paleocene attests to the uniformity of shallow marine shelves between western Africa and the Atlantic and Gulf Coastal Plains of the USA, as well as myliobatiform diversification following the K/Pg mass extinction event.

UUID: http://zoobank.org/3a1580d1-a2f4-49b6-8170-69a778c49181

Type
Articles
Copyright
Copyright © 2019, The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adolfssen, J., and Ward, D., 2015, Neoselachians from the Danian (early Paleocene) of Denmark: Acta Palaeontologica Polonica, v. 60, p. 313339.Google Scholar
Arambourg, C., 1952, Les vertébrés fossiles des gisements de phosphates (Maroc-Algérie-Tunisie): Notes et Mémoires du Service Géologique du Maroc, v. 92, p. 1372.Google Scholar
Aschliman, N., 2014, Interrelationships of the durophagous stingrays (Batoidea: Myliobatidae): Environmental Biology of Fishes, v. 97, p. 967979.CrossRefGoogle Scholar
Aschliman, N., Claeson, K., and McEachran, J., 2012, Phylogeny of Batoidea, in Carrier, J., Musick, J., and Heithaus, M., eds., Biology of Sharks and their Relatives, 2nd Edition: Boca Raton, FL, CRC Press, p. 5794.CrossRefGoogle Scholar
Becker, M. and Chamberlain, J. Jr., 2012, Osteichthyans from the Paleocene Clayton Limestone of the Midway Group, Hot Spring County, Arkansas, USA: Bony fish evolution across the Cretaceous-Paleogene Boundary: Paludicola, v. 4, p. 194207.Google Scholar
Becker, M., Slattery, W., and Chamberlain, J. Jr., 1998, Mixing of Santonian and Campanian chondrichthyan and ammonite macrofossils along a transgressive lag deposit, Greene County, western Alabama: Southeastern Geology, v. 37, p. 205216.Google Scholar
Becker, M., Chamberlain, J. Jr., and Wolf, G., 2006, Chondrichthyans from the Arkadelphia Formation (Upper Cretaceous: late Maastrichtian) of Hot Spring County, Arkansas: Journal of Paleontology, v. 80, p. 700716.CrossRefGoogle Scholar
Becker, M., Seidemann, D., Chamberlain, J. Jr, Buhl, D., and Slattery, W., 2008, Strontium isotopic signatures in the enameloid and dentine of upper Cretaceous shark teeth from western Alabama: paleoecologic and geochronologic implications: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 264, p. 188194.CrossRefGoogle Scholar
Becker, M., Mallery, C., and Chamberlain, J. Jr., 2010, Osteichthyans from the Arkadelphia Formation (Late Maastrichtian) of Hot Spring County, Arkansas, USA: Journal of Vertebrate Paleontology, v. 30, p. 10191036.CrossRefGoogle Scholar
Becker, M., Smith, L., and Chamberlain, J. Jr., 2011, Chondrichthyans from the Clayton Limestone Unit of the Midway Group (Paleogene: Paleocene) of Hot Spring County, Arkansas, USA: Cainozoic Research, v. 8, p. 1328.Google Scholar
Becker, M., Maisch, H. IV, and Chamberlain, J. Jr., 2013, Plesiosaurian Remains from the Arkadelphia Formation-Midway Group Contact (Maastrichtian–Paleocene) Hot Spring County, Near Malvern, Arkansas, USA: Paludicola, v. 9, p. 131143.Google Scholar
Becker, M., Maisch, H. IV, and Chamberlain, J. Jr., 2016, Turtles from an Arkadelphia Formation Midway Group Lag Deposit, (Maastrichtian–Paleocene) Hot Springs, County, Arkansas, USA: Geosciences, v. 6, p. 114.CrossRefGoogle Scholar
Bertozzi, T., Lee, M., and Donnellan, S., 2016, Stingray diversification across the end-Cretaceous extinctions: Memoirs of Museum Victoria, v. 74, p. 379390.CrossRefGoogle Scholar
Bonaparte, C., 1832–1841, Iconografia della fauna Italica per le quattro classi degli animali vertebrati. 3 (Pesci): Rome, Tipographia Salviucci, 78 color plates.Google Scholar
Brett, C., 1998, Sequence stratigraphy, paleoecology, and evolution; biotic clues and responses to sea-level fluctuations: Palaios, v. 13, p. 241262.CrossRefGoogle Scholar
Briskin, M., and Fluegeman, R., 1990, Paleocene sea level movements with a 430,000 year quasi-periodic cyclicity: Palaios, v. 5, p.184198.CrossRefGoogle Scholar
Cappetta, H., 1972, Les poissons crétacés et tertiaires du bassin des Iullemmeden (République du Niger): Palaeovertebrata, v. 5, p. 179251.Google Scholar
Cappetta, H., 1987, Handbook of paleoichthyology. Chondrichthyes II, in Schultze, H., ed., Mesozoic and Cenozoic Elasmobranchii: Stuttgart and New York, Gustav Fischer Verlag, 193 p.Google Scholar
Cappetta, H., 1992, Nouveaux Rhinobatoidei (Neoselachii, Rajiformes) à denture spécialisée du Maastrichtien du Maroc. Remarques sur l'évolution dentaire des Rajiformes et des Myliobatiformes: Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, v. 187, p. 3152.Google Scholar
Cappetta, H., 2012, Chondrichthyes (Mesozoic and Cenozoic Elasmobranchii: Teeth), in Schultze, H., ed., Handbook of Paleoichthyology: München: Verlag F. Pfeil, 3E, 512 p.Google Scholar
Cappetta, H., and Case, G., 1975, Contribution à l’étude des Sélaciens du groupe Monmouth (Campanien–Maestrichtien) du New Jersey: Palaeontographica, Abteilung A: Palaozoologie–Stratigraphie, v. 151, p. 146.Google Scholar
Cappetta, H., and Gayet, M., 2013, A new elasmobranch genus (Myliobatiformes, Dasyatoidea) from the Danian of Potosí (Bolivia): Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen, v. 269, p. 285290.CrossRefGoogle Scholar
Case, G., 1994, Fossil fish remains from the Late Paleocene Tuscahoma and Early Eocene Bashi Formations of Meridian, Lauderdale County, Mississippi: Palaeontographica, Abteilung A: Palaozoologie–Stratigraphie, v. 230, p. 97138.Google Scholar
Case, G., 1996, A new selachian fauna from the Lower Hornerstown formation (Early Paleocene/Montian) of Monmouth County, New Jersey: Palaeontographica, Abteilung A: Palaozoologie–Stratigraphie, v. 242, p. 114.Google Scholar
Claeson, K., O'Leary, M., Roberts, E., Sissoko, F., Bouaré, M., Tapanila, L., Goodwin, D., and Gottfried, M., 2010, First Mesozoic record of the stingray Myliobatis wurnoensis from Mali and a phylogenetic analysis of Myliobatidae incorporating dental characters: Acta Palaeontologica Polonica, v. 55, p. 655675.CrossRefGoogle Scholar
Compagno, L., 1973, Interrelationships of living elasmobranchs: Journal of the Linnaean Society (Zoology), v. 53, p. 6398.Google Scholar
Compagno, L., 1977, Phyletic relationships of living sharks and rays: American Zoologist, v. 17, p. 303322.CrossRefGoogle Scholar
Cope, E., 1886, A contribution to the vertebrate paleontology of Brazil: Proceedings of the American Philosophical Society, v. 23, p. 121.Google Scholar
Dames, W., 1881, Über Fischzähne aus der obersenonen Tuffkreide von Maastricht für welcher den Gattungsnamen Rhombodus vorschlug: Sitzungsberichte der Gesellschaft naturforschender Freunde zu Berlin, v. 1881, p. 13.Google Scholar
Dastas, N., Chamberlain, J. Jr., and Becker, M., 2010, Palynomorphs of the Arkadelphia Formation and Midway Group transition (Maastrichtian–Danian), Hot Spring County, Arkansas: Geological Society of America, Abstracts with Programs, v. 42, p. 185.Google Scholar
Frisk, M., 2010, Life history strategies of batoids, in Heithaus, M., and Carrier, J., eds., Sharks and Their Relatives II: Boca Raton, FL, CRC Press, p. 290323.Google Scholar
Guinot, G., Adnet, S., and Cappetta, H., 2012, An analytical approach for estimating fossil record and diversification events in sharks, skates and rays: PLoS One, v. 7: p.e44632.CrossRefGoogle ScholarPubMed
Haley, B., Glick, E., Bush, W., Clardy, B., Stone, C., Woodward, M., and Zachry, D., 1993, Geologic map of Arkansas. 1:500,000 scale: Arkansas Geologic Commission 1.Google Scholar
Haley, B., Stone, C., Clardy, B., and Hanson, W., 2009, Geologic Map of the Arkadelphia, Quadrangle, Clark, Garland, Hempstead, Hot Spring, Howard, Montgomery, Pike, and Polk Counties, Arkansas. 1:100,000 Scale, DGM-AR-01100: Arkansas Geologic Commission: Little Rock, AR, USA.Google Scholar
Haq, B., 2014, Cretaceous eustasy revisited: Global and Planetary Change, v. 113, p. 4458.CrossRefGoogle Scholar
Haq, B., Hardenbol, J., and Vail, P., 1988, Mesozoic and Cenozoic chronostratigraphy and eustatic cycles, in Wilgus, C., Posamentier, H., Ross, C., and Kendall, C., eds., Sea Level Changes: An Integrated Approach: Tulsa, Oklahoma, SEPM Special Publication 42, p. 71104.CrossRefGoogle Scholar
Hay, O., 1902, On a collection of Upper Cretaceous fishes from Mount Lebanon, Syria, with descriptions of four new genera and nineteen new species: Bulletin of the American Museum of Natural History, v. 19, p. 395452.Google Scholar
Holland, S., 2012, Sea level change and the area of shallow-marine habitat: implications for marine biodiversity: Paleobiology, v. 38, p. 205217.CrossRefGoogle Scholar
Huxley, T., 1880, On the application on the laws of evolution to the arrangement of the vertebrata and more particularly of the Mammalia: Zoological Society of London Scientific Memoirs, v. 4, p. 457472.Google Scholar
Kent, B., 1999, Rays from the Fisher/Sullivan site, in Weems, R., and Grimsley, G., eds., Early Eocene Vertebrates and Plants from the Fisher/Sullivan Site (Nanjemoy Formation) Stafford County, Virginia: Virginia Division of Mineral Resources Publication 152, p. 3952.Google Scholar
Kriwet, J., and Benton, M., 2004, Neoselachian (Chondrichthyes, Elasmobranchii) diversity across the Cretaceous-Tertiary Boundary: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 214, p. 181194.CrossRefGoogle Scholar
Last, P., Naylor, G., Séret, B., White, W., de Carvalho, M., and Stehmann, M., 2016, Rays of the World: Melbourne, CSIRO Publishing, 790 p.Google Scholar
Leriche, M., 1913, Les poissons paléocènes de Landana (Congo). Les gisements de poissons paléocènes et éocènes de la côte occidentale d'Afrique: Annales du Musée du Congo Belge, v. 1, p. 6791.Google Scholar
Maisch, H. IV, Becker, M., and Griffiths, M., in press (2019), Chondrichthyans from the Lower Clayton Limestone Unit of the Midway Group (Paleocene) near Malvern, Arkansas, USA: PalZ (Paläontologische Zeitschrift).CrossRefGoogle Scholar
Mancini, E., and Puckett, T., 2005, Jurassic and Cretaceous transgressive-regressive (TR) cycles Northern Gulf of Mexico, USA: Stratigraphy, v. 2, p. 3148.Google Scholar
Mancini, E., Tew, B., and Smith, C., 1989, Cretaceous-Tertiary contact, Mississippi and Alabama: The Journal of Foraminiferal Research, v. 19, p. 93104.CrossRefGoogle Scholar
Martins, A., Heupel, M., Chin, A., and Simpfendorfer, C., 2018, Batoid nurseries: definition, use and importance: Marine Ecology Progress Series, v. 595, p. 253267.Google Scholar
McFarland, J., 1998, Stratigraphic summary of Arkansas: Arkansas Geological Commission Information Circular, v. 36, p. 138.Google Scholar
McFarland, J., 2004, Stratigraphic summary of Arkansas: Arkansas Geological Commission Information Circular; Arkansas Geological Commission: Little Rock, Arkansas, v. 36, 44 p.Google Scholar
Miller, K., Sugarman, P., Browning, J., Kominz, M., Olsson, R., Feigenson, M., and Hernández, J., 2004, Upper Cretaceous sequences and sea-level history, New Jersey coastal plain: Geological Society of America Bulletin, v. 116, p. 368393.CrossRefGoogle Scholar
Miller, K., Sherrell, R., Browning, J., Field, M., Gallagher, W., Olsson, R., Sugarman, P., Tuorto, S., and Wahyudi, H., 2010, Relationship between mass extinction and iridium across the Cretaceous-Paleogene boundary in New Jersey: Geology, v. 38, p. 867870.CrossRefGoogle Scholar
Noubhani, A., and Cappetta, H., 1997, Les Orectolobiformes, Carcharhiniformes et Myliobatiformes (Elasmobranchii, Neoselachii) des Bassins à phosphate du Maroc (Maastrichtien-Lutétien basal). Systématique, biostratigraphie, évolution et dynamique des faunes: Palaeo Ichthyologica, v. 8, p. 1327.Google Scholar
Phillips, G., and Case, G., 2019, An elasmobranch assemblage from the Danian (Early Paleocene) of Mississippi: Geologic Society of America Southeastern Section Meeting, Abstracts with Programs, v. 51, p. 25.Google Scholar
Purdy, R., 1998, Chondrichthyan fishes from the Paleocene of South Carolina: Transactions of the American Philosophical Society, New Series, v. 88, p. 122146.CrossRefGoogle Scholar
Rangel, B., Rodrigues, A., and Moreira, R., 2018, Use of a nursery area by cownose rays (Rhinopteridae) in southeastern Brazil: Neotropical Ichthyology, v. 16: e170089.CrossRefGoogle Scholar
Ribeiro de Santana, F., Cicimurri, D., and Barbosa, J., 2011, New material of Apocopodon sericeus Cope 1886 (Myliobatiformes, Myliobatidae) from the Paraíba Basin (northeastern Brazil), and South Carolina (USA) with a reanalysis of the species: PalArch's Journal of Vertebrate Paleontology, v. 8, p. 120.Google Scholar
Scotese, C., 2014, Atlas of Late Cretaceous Maps, PALEOMAP Atlas for ArcGIS, volume 2, The Cretaceous, Maps 16–22, Mollweide Projection: PALEOMAP Project, Evanston, IL.Google Scholar
Shimada, K., Schumacher, B., Parkin, J., and Palermo, J., 2006, Fossil marine vertebrates from the lowermost Greenhorn Limestone (Upper Cretaceous: Middle Cenomanian) in southeastern Colorado: Journal of Paleontology, v. 63, p. 145.CrossRefGoogle Scholar
Solé, F., Noiret, C., Desmares, D., Adnet, S., Taverne, L., De Putter, T., Mees, F., Yans, J., Steeman, T., Louwye, S., and Folie, A., 2018, Reassessment of historical sections from the Paleogene marine margin of the Congo Basin reveals an almost complete absence of Danian deposits: Geoscience Frontiers, v. 10, p. 10391063.CrossRefGoogle Scholar
Stringer, G., and Sloan, C., 2018, Significance of Early Paleocene fish otoliths from two Clayton Formation (Danian) sites in Central Arkansas: Geologic Society of America Abstracts with Programs, v. 50, p. 211.Google Scholar
Stromer, E., 1910, Reptilien und Fischreste aus dem marinen Alttertiär von Südtogo (Westafrika): Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, v. 52, p. 478505.Google Scholar
Sugarman, P., Miller, K., Bukry, D., and Feigenson, M., 1995, Uppermost Campanian– Maastrichtian Strontium Isotopic Biostratigraphic and Sequence Stratigraphic Framework of the New Jersey Coastal Plain: Geologic Society of America, v. 107, p. 1937.2.3.CO;2>CrossRefGoogle Scholar
Ward, D., and Wiest, R., 1990, A checklist of Paleocene and Eocene sharks and rays (Chondrichthyes) from the Pamunkey Group, Maryland and Virginia, USA: Tertiary Research, v. 12, p. 8188.Google Scholar
White, E., 1931, The vertebrate faunas of the English Eocene. I. From the Thanet Sands to the Basement Bed of the London Clay: British Museum (Natural History), 121 p.Google Scholar
White, E., 1934, Fossil fishes of Sokoto province: Bulletin of the Geological Survey of Nigeria, v. 14, p. 178.Google Scholar