Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-25T19:54:29.002Z Has data issue: false hasContentIssue false

New species of dinoflagellate cysts and other palynomorphs from the latest Miocene and Pliocene of DSDP Hole 603C, western north Atlantic

Published online by Cambridge University Press:  20 May 2016

Martin J. Head
Affiliation:
Godwin Institute for Quaternary Research, Department of Geography, University of Cambridge, Downing Place, Cambridge CB2 3EN, United Kingdom,
Geoffrey Norris
Affiliation:
Department of Geology, Earth Sciences Centre, University of Toronto, 22 Russell Street, Toronto, Ontario, Canada, M5S 3B1,

Abstract

Detailed investigation of the essentially complete uppermost Miocene through Lower Pleistocene sequence in Deep Sea Drilling Project (DSDP) Hole 603C, western North Atlantic, has revealed the presence of the new dinoflagellate cyst species Lejeunecysta hatterasensis, Lejeunecysta interrupta, Corrudinium devernaliae, and Pyxidinopsis vesiculata, as well as the acritarchs Leiosphaeridia rockhallensis Head new species and Leffingwellia costata new genus and species. Independent magnetobiostratigraphic control of DSDP Hole 603C constrains the ranges of these new species. Lejeunecysta interrupta n. sp. appears to range no higher than lowermost Pliocene at 5.2 Ma, Pyxidinopsis vesiculata n. sp. has a range top at about 4.5 Ma in the Lower Pliocene, Corrudinium devernaliae n. sp. has a well-defined range of 4.7–4.1 Ma within the Lower Pliocene, and Leiosphaeridia rockhallensis n. sp. has a similarly well-defined range of 4.4–3.9 Ma within the Lower Pliocene. The presence of Leiosphaeridia rockhallensis n. sp. in the Ramsholt Member of the Coralline Crag Formation, eastern England, supports an Early Pliocene age for this member.

Type
Research Article
Copyright
Copyright © The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Artzner, D. G., and Dörhöfer, G. 1978. Taxonomic note: Lejeunecysta nom. nov. pro Lejeunia Gerlach 1961 emend. Lentin and Williams 1976—dinoflagellate cyst genus. Canadian Journal of Botany, 56:13811382.CrossRefGoogle Scholar
Balech, E. 1988. Los dinoflagelados del Atlántico Sudoccidental. Publicaciónes Especiales Instituto Español de Oceanografía, 1:1310.Google Scholar
Berggren, W. A. 1973. The Pliocene time scale: calibration of planktonic foraminifera and calcareous nannoplankton zones. Nature, 243:391397.CrossRefGoogle Scholar
Berggren, W. A. 1977. Late Neogene planktonic foraminiferal biostratigraphy of the Rio Grande Rise (South Atlantic). Marine Micropaleontology, 2:265313.CrossRefGoogle Scholar
Berggren, W. A., Kent, D. V., Swisher, C. C. III, and Aubry, M.-P. 1995a. A revised Cenozoic geochronology and chronostratigraphy, p. 129212. In Berggren, W. A., Kent, D. V., and Hardenbol, J. (eds.), Geochronology, Time Scales and Global Stratigraphic Correlation. Special Publication, 54. SEPM (Society for Sedimentary Geology), Tulsa, Oklahoma.Google Scholar
Berggren, W. A., Hilgen, F. J., Langereis, C. G., Kent, D. V., Obradovich, J. D., Raffi, I., Raymo, M. E., and Shackleton, N. J. 1995b. Late Neogene chronology: new perspectives in high-resolution stratigraphy. GSA Bulletin, 107:12721287.2.3.CO;2>CrossRefGoogle Scholar
Biffi, U., and Grignani, D. 1983. Peridinioid dinoflagellate cysts from the Oligocene of the Niger Delta, Nigeria. Micropaleontology, 29:126145.CrossRefGoogle Scholar
Bujak, J. P. 1980. Dinoflagellate cysts and acritarchs from the Eocene Barton Beds of southern England, p. 3691. In Bujak, J. P., Downie, C., Eaton, G. L., and Williams, G. L. (eds.), Dinoflagellate Cysts and Acritarchs from the Eocene of Southern England. The Palaeontological Association, Special Papers in Palaeontology, Number 24.Google Scholar
Bujak, J. P., Downie, C., Eaton, G. L., and Williams, G. L. 1980. Dinoflagellate Cysts and Acritarchs from the Eocene of Southern England. The Palaeontological Association, Special Papers in Palaeontology, Number 24, 100 p.Google Scholar
Bukry, D. 1973. 16: Low-latitude coccolith biostratigraphic zonation, p. 685703. In Edgar, N. T., Saunders, J. B., et al. (eds.), Initial Reports of the Deep Sea Drilling Project, Volume 15. U.S. Government Printing Office, Washington, D.C.Google Scholar
Bukry, D. 1975. 24: Coccolith and silicoflagellate stratigraphy, Northwestern Pacific Ocean, Deep Sea Drilling Project Leg 32, p. 677701. In Larson, R. L., Moberly, R., et al. (eds.), Initial Reports of the Deep Sea Drilling Project. Volume 32. U.S. Government Printing Office, Washington, D.C.Google Scholar
Bütschli, O. 1885. Erster Band. Protozoa, p. 8651088. In Dr. H. G. Bronn's Klassen und Ordnungen des Thier-Reiches, wissenschaftlich dargestellt in Wort und Bild. C. F. Winter'sche Verlagshandlung, Leipzig and Heidelberg.Google Scholar
Canninga, G., Zijderveld, J. D. A., and van Hinte, J. E. 1987. Late Cenozoic magnetostratigraphy of Deep Sea Drilling Project Hole 603C, Leg 93, on the North American continental rise off Cape Hatteras, p. 839848. In van Hinte, J. E., Wise, S. W. Jr., et al. (eds.), Initial Reports of the Deep Sea Drilling Project, 93(2). U.S. Government Printing Office, Washington, D.C.Google Scholar
de Vernal, A., and Mudie, P. J. 1989. Pliocene and Pleistocene palynostratigraphy at ODP Sites 646 and 647, eastern and southern Labrador Sea, p. 401422. In Srivastava, S. P., Arthur, M., Clement, B., et al. (eds.), Proceedings of the Ocean Drilling Program, Scientific Results, 105. Ocean Drilling Program, College Station, Texas.Google Scholar
Duffield, S., and Stein, J. A. 1986. Peridiniacean-dominated dinoflagellate cyst assemblages from the Miocene of the Gulf of Mexico shelf, offshore Louisiana. American Association of Stratigraphic Palynologists, Contributions Series, 17:2746.Google Scholar
Engel, E. R. 1992. Palynologische Evidenz klimarelevanter Ereignisse in miozänen Sedimenten des Nordatlantiks. Geologisches Jahrbuch, Series A, 125:3139.Google Scholar
Eisenack, A. 1958. Tasmanites Newton 1875 und Leiosphaeridia n. g. als Gattungen der Hystrichosphaeridea. Palaeontographica, Abt. A, 110:119.Google Scholar
Fensome, R. A., Taylor, F. J. R., Norris, G., Sarjeant, W. A. S., Wharton, D. I., and Williams, G. L. 1993. A Classification of Living and Fossil Dinoflagellates. Micropaleontology Special Publication Number 7, 351 p.Google Scholar
Gerlach, E. 1961. Mikrofossilien aus dem Oligozän und Miozän Nordwestdeutschlands, unter besonderer Berücksichtigung der Hystrichosphären und Dinoflagellaten. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 112:143228.Google Scholar
Habib, D. 1976. Neocomian dinoflagellate zonation in the western North Atlantic. Micropaleontology, 21:373392. [Imprinted, 1975]CrossRefGoogle Scholar
Haeckel, E. 1894. Systematische Phylogenie. Entwurf eines natürlichen Systems der Organismen auf Grund ihrer Stammegeschichte, I. Systematische Phylogenie der Protisten und Pflanzen. Berlin, Reimer, xv+400 p.Google Scholar
Head, M. J. 1993. Dinoflagellate cysts, sporomorphs, and other palynomorphs from the marine uppermost Pliocene St. Erth Beds, Cornwall, southwestern England. The Paleontological Society, Memoir 31:162.Google Scholar
Head, M. J. 1997. Thermophilic dinoflagellate assemblages from the mid Pliocene of eastern England. Journal of Paleontology, 71:165193.CrossRefGoogle Scholar
Head, M. J., and Westphal, H. 1999. Palynology and paleoenvironments of a Pliocene carbonate platform: the Clino Core, Bahamas. Journal of Paleontology, 73(1):125.CrossRefGoogle Scholar
Head, M. J., Harland, R., and Matthiessen, J. 2001. Cold marine indicators of the late Quaternary: the new dinoflagellate cyst genus Islandinium and related morphotypes. Journal of Quaternary Science, 16:681698.CrossRefGoogle Scholar
Jenkins, D. G., and Houghton, S. D. 1987. Age, correlation and paleoecology of the St. Erth Beds and the Coralline Crag of England. Mededelingen van de Werkgroep voor Tertiaire en Kwartaire Geologie, 24:147156.Google Scholar
Knüttel, S., Russell, M. D. Jr., and Firth, J. V. 1989. Neogene calcareous nannofossils from ODP Leg 105: implications for Pleistocene paleoceanographic trends, p. 245262. In Srivastava, S. P., Arthur, M. A., Clement, B., et al. (eds.), Proceedings of the Ocean Drilling Program, Scientific Results, 105. Ocean Drilling Program, College Station, Texas.Google Scholar
Kolev, S. M. 1993. Pliocene dinoflagellate-acritarch biostratigraphy and paleoecology integrated with magnetostratigraphy: DSDP Leg 93, Hole 603C, western North Atlantic. Unpublished M. Sc. thesis, University of Toronto, 124 p.Google Scholar
Lentin, J. K., and Williams, G. L. 1976. A monograph of fossil peridinioid dinoflagellate cysts. Bedford Institute of Oceanography Report Series, BI-R-75-16, 237 p.Google Scholar
Lentin, J. K., and Williams, G. L. 1981. Fossil dinoflagellates: index to genera and species, 1981 edition. Bedford Institute of Oceanography Report Series, BI-R-81-12, 345 p.Google Scholar
Libert, M. A. 1820. Sur un genre nouveau d'hépatiques, Lejeunea . Annates générales des sciences physiques, 6(96):372374.Google Scholar
Lindemann, E. 1928. Abteilung Peridineae (Dinoflagellatae), p. 3104. In Engler, A. and Prantl, K. (eds.), Die Natürlichen Pflanzenfamilien nebst ihren Gattungen und wichtigeren Arten insbesondere den Nutzpflanzen. Zweite stark vermehrte und verbesserte Auflage herausgegeben von A. Engler. 2 Band. Wilhelm Engelmann, Leipzig.Google Scholar
Louwye, S. 2002. Dinoflagellate cyst biostratigraphy of the Upper Miocene Deurne Sands (Diest Formation) of northern Belgium, southern North Sea Basin. Geological Journal, 37:113.CrossRefGoogle Scholar
Matsuoka, K. 1983. Late Cenozoic dinoflagellates and acritarchs in the Niigata District, central Japan. Palaeontographica, Abteilung B, 187:89154.Google Scholar
Ma'alouleh, K., and Moullade, M. 1987. Biostratigraphic and paleoenvironmental study of Neogene and Quaternary planktonic foraminifers from the lower continental rise of the New Jersey margin (western North Atlantic), Deep Sea Drilling Project Leg 93, Site 603, p. 481491. In van Hinte, J. E., Wise, S. W. Jr., et al. (eds.), Initial Reports of the Deep Sea Drilling Project, 93(2). U.S. Government Printing Office, Washington, D.C.Google Scholar
Moullade, M. 1987. Deep Sea Drilling Project Leg 93: biostratigraphic synthesis, p. 12711283. In van Hinte, J. E., Wise, S. W. Jr., et al. (eds.), Initial Reports of the Deep Sea Drilling Project, 93(2). U.S. Government Printing Office, Washington, D.C.Google Scholar
Mudie, P. J. 1987. Palynology and dinoflagellate biostratigraphy of Deep Sea Drilling Project Leg 94, Sites 607 and 611, North Atlantic Ocean, p. 785812. In Ruddiman, W. F., Kidd, R. B., Thomas, E., et al. (eds.), Initial Reports of the Deep Sea Drilling Project, 94. U.S. Government Printing Office, Washington, D.C.Google Scholar
Muza, J. P., Wise, S. W. Jr., and Covington, J. M. 1987. Neogene calcareous nannofossils from Deep Sea Drilling Project Site 603, lower continental rise, western North Atlantic: biostratigraphy and correlations with magnetic and seismic stratigraphy, p. 593616. In van Hinte, J. E., Wise, S. W. Jr., et al. (eds.), Initial Reports of the Deep Sea Drilling Project, 93(2). U.S. Government Printing Office, Washington, D.C.Google Scholar
Okada, H., and Bukry, D. 1980. Supplementary modification and introduction of code numbers to the low-latitude coccolith biostratigraphic zonation (Bukry, 1973; 1975). Marine Micropaleontology, 5:321325.CrossRefGoogle Scholar
Pascher, A. 1914. Über Flagellaten und Algen. Berichte der Deutschen Botanischen Gesellshaft, 36:136160.Google Scholar
Powell, A. J. 1986. The stratigraphic distribution of late Miocene dinoflagellate cysts from the Castellanian superstage stratotype, northwest Italy. American Association of Stratigraphic Palynologists, Contributions Series, 17:129149.Google Scholar
Reid, P. C. 1977. Peridiniacean and glenodiniacean dinoflagellate cysts from the British Isles. Nova Hedwigia, 29:429463.Google Scholar
Stover, L. E., and Evitt, W. R. 1978. Analyses of pre-Pleistocene organic-walled dinoflagellates. Stanford University Publications Geological Sciences, 15:1300.Google Scholar
Taylor, F. J. R. 1980. On dinoflagellate evolution. BioSystems, 13:65108.CrossRefGoogle ScholarPubMed
Turner, R. E. 1984. Acritarchs from the type area of the Ordovician Caradoc Series, Shropshire, England. Palaeontographica, Abt. B, 190:87157.Google Scholar
Turon, J.-L., and Londeix, L. 1988. Les assemblages de kystes de dinoflagellés en Méditerranée occidentale (Mer d'Alboran). Mise en évidence de l'évolution des paléoenvironnements depuis le dernier maximum glaciaire. Bulletin des Centres de recherches exploration-production Elf-Aquitaine, 12:313344.Google Scholar
Van Couvering, J. A., Castradori, D., Cita, M. B., Hilgen, F. J., and Rio, D. 2000. The base of the Zanclean Stage and of the Pliocene Series. Episodes, 23:179187.CrossRefGoogle Scholar
van Hinte, J. E., Wise, S. W. Jr., Biart, B. N. M., Covington, J. M., Dunn, D. A., Haggerty, J. A., Johns, M. W., Meyers, P. A., Moullade, M. R., Muza, J. P., Ogg, J. G., Okamura, M., Sarti, M., and von Rad, U. 1987. Initial Reports of the Deep Sea Drilling Project, 93(1). U.S. Government Printing Office, Washington, D.C., p. 1469.Google Scholar
Zevenboom, D. 1995. Dinoflagellate Cysts from the Mediterranean Late Oligocene and Miocene. CIP-Gegevens Koninklijke Bibliotheek, Den Haag, 221 p. (Published Ph.D. thesis, State University of Utrecht.).Google Scholar