Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-13T02:57:59.147Z Has data issue: false hasContentIssue false

New species and records from the Eocene of England and France support early diversification of the coral genus Acropora

Published online by Cambridge University Press:  20 May 2016

Carden C. Wallace*
Affiliation:
Museum of Tropical Queensland, Townsville 4810, Australia,

Abstract

Five new species of the highly successful reef-building coral genus Acropora are described from Eocene locations in England and France (Acropora britannica, A. alvarezi, A. wilsonae, A. bartonensis, and A. proteacea) and additional records are given for six fossil species (A. deformis, A. anglica, A. solanderi, A. roemeri, A. lavandulina, and A. ornata), based on re-examination of material in the collections of the Natural History Museum, London. Specimens came from the Lutetian (49.0 to 41.3 Ma) of France, Bartonian (41.4 to 37.0 Ma) of England and France and Priabonian (36.0-34.2 Ma) of England. Included are the earliest record of a species with tabular or plate-like colonies similar to those in the modern “hyacinthus” species group (A. proteacea n. sp.) and the earliest records of simple hispidose forms (A. bartonensis n. sp. and A. roemeri), similar to those in the modern “florida” species group. The Priabonian material from southern England (A. brittanica n. sp. and A. anglica) shows the earliest occurrence of two sturdy species groups, the “humilis II” and “robusta” groups respectively, which now occur together on reef fronts throughout the modern Indo-Pacific. The new descriptions and records contribute to evidence that the genus diversified rapidly after its appearance in the fossil record. This diversification may have contributed to the rapid speciation and dispersal, observed in this genus during the Neogene, culminating in its extraordinary dominance of modern Indo-Pacific reefs.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alvarez Perez, G. 1997. New Eocene coral species from Igualada (Barcelona, NE of Spain). Boletin de la Real Sociedad Espanola de Historia Natural Seccion Geologica, 91:297304.Google Scholar
Baron-Szabo, R. C. 2006. Corals of the K/T boundary: Scleractinian corals of the suborders Astrocoeniina, Faviina, Rhipidogyrina and Amphiastaena. Journal of Systematic Palaeontology, 4:1108.Google Scholar
Berggren, W. A., Kent, D. V., Swisher, C. C., and Aubry, M.-P. 1995. Geochronology, time scales and global stratigraphic correlation. SEPM Special Publication 54, Tulsa, Oklahoma.Google Scholar
Boschma, H. 1961. Acropora Oken, 1815 (Anthozoa, Madreporaria): Proposed validation under the plenary powers. Bulletin of Zoological Nomenclature, 18:334335.Google Scholar
Carbone, F., Matteucci, R., Pignatti, J. S., and Russo, A. 1993. Facies analysis and biostratigraphy of the Auradu limestone formation in the Berbera-Sheikh area, north-western Somalia. Geologica Romana, 29:213235.Google Scholar
China, W. E. 1963. Opinion 674: Acropora Oken, 1815 (Anthozoa, Madreporaria): Validated under the plenary powers. Bulletin of Zoological Nomenclature, 20:319330.Google Scholar
Dana, J. D. 1846. Zoophytes. United States Exploring Expedition, Volume 7. Philadelphia, 740 p.Google Scholar
Davis, A. G. 1952. The Brockenhurst Beds at Victoria Tilery, Brockenhurst, Hampshire. Proceedings of the Geologists' Association, 63:215219.Google Scholar
DeFrance, E. 1828. Dictionaire des Sciences Naturelles. F. G. Lavrault, Strasbourg.Google Scholar
Done, T. J. 1983. Coral zonation: Its nature and significance, p. 107147. In Barnes, D. J. (ed.), Perspectives on Coral Reefs. Australian Institute of Marine Science, Manuka.Google Scholar
Duncan, P. M. 1866. A monograph of the British fossil corals. Second Series, Pt. 1, Introduction: Corals from the Tertiary formations. Palaeontographical Society, London, 66 p.CrossRefGoogle Scholar
Fukami, H., Omori, M., and Hatta, M. 2000. Phylogenetic relationships in the coral family Acroporidae, reassessed by inference from the mitochondrial genes. Zoological Sciences, 17:689696.Google Scholar
Golonka, J. 2000. Cambrian-Neogene: Plate Tectonic Maps. Uniwersytetu Jagiellon skiego, Kraków, 125 p.Google Scholar
Guinotte, J. M., Buddemeier, R. W., and Kleypas, J. A. 2003. Future coral reef habitat marginality: Temporal and spatial effects of climate change in the Pacific basin. Coral Reefs, 22:551558.CrossRefGoogle Scholar
Insole, A. and Daley, B. 1985. A revision of the lithostratigraphical nomenclature of the Late Eocene and Early Oligocene strata of the Hampshire Basin, Southern England. Tertiary Research, 7:67100.Google Scholar
Kleypas, J. A., Buddemeier, R. W., and Gattuso, J.-P. 2001. The future of coral reefs in an age of global change. Earth Sciences, 90:426437.Google Scholar
Linnaeus, C. 1758. Systema naturae (edition 10), 1:1824Google Scholar
Michelin, H. 1840-1847. Iconographie zoophytologique: description par localities et terrains des polypiers fossiles de France et pays environnants/par Hardouin Michelin; accompagnee de figures lithographiees par Ludovic Michelin et Delarue fils. Bertrand, Paris.Google Scholar
Michellotti, G. 1838. Specimen zoophytologie diluvianae. Turin, 225 p.Google Scholar
Milne-Edwards, H. and Haime, J. 1850. Monographie des polypiers fossiles des terrains palaeozoiques. Archives Museum d'Histoire Naturelle (Paris), v. 5, 502 p.Google Scholar
Milne Edwards, H. and Haime, J. 1850-1854. A Monograph of the British Fossil Corals. Palaeontological Society, London, 299 p.Google Scholar
Oken, L. 1815. Steinkorallen. Lehrbuch Naturgeschichte, 3:5974.Google Scholar
Oppenheim, P. 1901. Über einige Alttertäre Faunen der österreichsich-ungarischen Monarchie. Beiträ zur Paläontologie und Geologie Österreich-Ungarns und des Orients, 13:145.Google Scholar
Oppenheim, P. 1912. Neue Beiträge zur Eozänfauna Bosniens. Beiträge zur Paläontologie und Geologie Österreich-Ungarns und des Orients, 25:87149.Google Scholar
Potts, D. C. 1985. Sea-level fluctuations and speciation in Scleractinia, p. 127132. In Hamelin, V. and Salvat, B. (eds.), Proceedings 5th International Coral Reef Congress. Volume 4. International Society of Reef Studies, Tahiti.Google Scholar
Rosen, B. R. 1975. The distribution of reef corals. Reports of the Underwater Association, (New Series), 1:116.Google Scholar
Stehli, F. G. and Wells, J. W. 1971. Diversity and age patterns in hermatypic corals. Systematic Zoology, 20:115126.Google Scholar
Van Oppen, M., McDonald, B., Willis, B., and Miller, D. 2001. The evolutionary history of the coral genus Acropora (Scleractinia, Cnidaria) based on a mitochondrial and a nuclear marker: Reticulation, incomplete lineage sorting, or morphological convergence? Molecular Biology and Evolution, 18:13151329.CrossRefGoogle ScholarPubMed
Veron, J. E. N. 1995. Corals in Space and Time: Biogeography and Evolution of the Scleractinia. University of New South Wales Press, Sydney, 321 p.Google Scholar
Veron, J. E. N. and Wallace, C. C. 1984. Scleractinia of Eastern Australia, Pt. V, Family Acroporidae. Australian Institute of Marine Science Monograph Series, Australian National University Press, Canberra, 485 p.Google Scholar
Verrill, A. E. 1902. Notes on corals of the genus Acropora (Madrepora Lam.) with new descriptions and figures of types, and of several new species. Transactions of the Connecticut Academy of Arts and Sciences, 11: 207266.Google Scholar
Wallace, C. C. 1999. Staghorn Corals of the World: A Revision of the Coral Genus Acropora (Scleractinia; Astrocoeniina; Acroporidae) Worldwide, with Emphasis on Morphology, Phylogeny and Biogeography. CSIRO Publishing, Melbourne, 421 p.Google Scholar
Wallace, C. C., Chen, C. A., Fukami, H., and Muir, P. R. 2007. Recognition of separate genera within Acropora based on new morphological, reproductive and genetic evidence from Acropora togianensis, and elevation of the subgenus Isopora Studer, 1878 to genus (Scleractinia; Astrocoeniidae; Acroporidae). Coral Reefs, 26:231239.Google Scholar
Wallace, C. C. and Rosen, B. R. 2006. Diverse staghorn corals (Acropora) in high latitude Eocene assemblages: Implications for the evolution of modern diversity patterns of reef corals. Proceedings of the Royal Society B, 273:975982.CrossRefGoogle ScholarPubMed
Wallace, C. C. and Wolstenholme, J. 1998. Revision of the coral genus Acropora (Scleractinia: Astrocoeniinae: Acroporidae) in Indonesia. Zoological Journal of the Linnean Society, 123:199384.Google Scholar
Wolstenholme, J., Wallace, C. C., and Chen, C. A. 2003. Species boundaries within the Acropora humilis species group (Cnidaria; Scleractinia): A morphological and molecular interpretation of evolution. Coral Reefs, 22: 155166.Google Scholar