Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-27T18:16:15.845Z Has data issue: false hasContentIssue false

A new soft-bodied fauna: The Pioche Formation of Nevada

Published online by Cambridge University Press:  14 July 2015

Bruce S. Lieberman*
Affiliation:
Department of Geology and Department of Ecology and Evolutionary Biology, 1475 Jayhawk Blvd., 120 Lindley Hall, University of Kansas, Lawrence 66045,

Abstract

A new Burgess Shale-type soft-bodied fauna crossing the Lower-Middle Cambrian boundary in the Comet Shale Member of the Pioche Formation in Lincoln County, Nevada, contains common remains of soft-bodied ecdysozoan taxa. These fossils provide important new information about the nature and variety of Cambrian soft-bodied organisms. Arthropod taxa include one species of Canadaspis Novozhilov in Orlov, 1960, one species of ?Perspicaris Briggs, 1977, three species of Tuzoia Walcott, 1912, and at least two species of Anomalocaris Whiteaves, 1892. A priapulid referable to Ottoia Walcott, 1911a, was also recovered. A comprehensive review of Tuzoia is given. Some specimens from Early Cambrian sections are replaced by hematite, resulting in iron staining similar to that in such other Early Cambrian soft-bodied faunas as the Kinzers Formation in Pennsylvania. Some taxa in the Comet Shale, and in other Early and Middle Cambrian soft-bodied faunas, have prodigious geographic ranges that spanned much of Laurentia and even other Cambrian cratons. Moreover, these taxa ranged across the Early-Middle Cambrian boundary relatively unscathed. This is in contrast to many trilobite taxa that had narrow geographic ranges in the Early Cambrian and high levels of extinction at the Early-Middle Cambrian boundary.

Type
Research Article
Copyright
Copyright © The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Babcock, L. E. 2001. Explaining ancient fossil motherlodes: depositional circumstances of Cambrian Burgess Shale-type deposits. American Paleontologist, 9:25.Google Scholar
Babcock, L. E., Zhang, W. T., and Leslie, S. A. 2001. The Chengjiang Biota: record of the Early Cambrian diversification of life and clues to exceptional preservation. GSA Today, 11:48.2.0.CO;2>CrossRefGoogle Scholar
Bergström, J., and Hou, X. 1998. Chengjiang arthropods and their bearing on early arthropod evolution, p. 151184. In Edgecombe, G. D. (ed.), Arthropod Fossils and Phylogeny. Columbia University Press, New York.Google Scholar
Berner, R. A. 1987. Models for Carbon and Sulfur cycles and atmospheric Oxygen: application to Paleozoic geologic history. American Journal of Science, 287:177196.CrossRefGoogle Scholar
Berner, R. A., and Canfield, D. E. 1989. A new model for atmospheric Oxygen over Phanerozoic time. American Journal of Science, 289:333361.CrossRefGoogle ScholarPubMed
Boxshall, G. 1998. Comparative limb morphology in major crustacean groups: the coxa-basis joint in postmandibular limbs, p. 155167. In Fortey, R. A. and Thomas, R. H. (eds.), Arthropod Relationships. Chapman and Hall, London.CrossRefGoogle Scholar
Brasier, M. D., and Sukhov, S. S. 1998. The falling amplitude of carbon isotopic oscillations through the Lower to Middle Cambrian: Northern Siberia data. Canadian Journal of Earth Sciences, 35:353373.CrossRefGoogle Scholar
Briggs, D. E. G. 1977. Bivalved arthropods from the Cambrian Burgess Shale of British Columbia. Palaeontology, 20:6772.Google Scholar
Briggs, D. E. G. 1978. The morphology, mode of life, and affinities of Canadaspis perfecta (Crustacea: Phyllocarida), Middle Cambrian, Burgess Shale, British Columbia. Philosophical Transactions of the Royal Society of London Series B, 281:439487.Google Scholar
Briggs, D. E. G. 1979. Anomalocaris, the largest known Cambrian arthropod. Palaeontology, 22:631664.Google Scholar
Briggs, D. E. G. 1992. Phylogenetic significance of the Burgess Shale crustacean Canadaspis . Acta Zoologica, 73:293300.CrossRefGoogle Scholar
Briggs, D. E. G. 1994. Giant predators from the Cambrian of China. Science, 264:12831284.CrossRefGoogle ScholarPubMed
Briggs, D. E. G., and Fortey, R. A. 1989. The early radiation and relationships of the major arthropod groups. Science, 246:241243.CrossRefGoogle ScholarPubMed
Briggs, D. E. G., and Mount, J. D. 1982. The occurrence of the giant arthropod Anomalocaris in the Lower Cambrian of southern California, and the overall distribution of the genus. Journal of Paleontology, 56:11121118.Google Scholar
Briggs, D. E. G., and Nedin, C. 1997. The taphonomy and affinities of the problematic fossil Myoscolex from the Lower Cambrian Emu Bay Shale of South Australia. Journal of Paleontology, 71:2232.CrossRefGoogle Scholar
Briggs, D. E. G., and Robison, R. A. 1984. Exceptionally preserved nontrilobite arthropods and Anomalocaris from the Middle Cambrian of Utah. The University of Kansas Paleontological Contributions, 111:124.Google Scholar
Briggs, D. E. G., Erwin, D. H., and Collier, F. J. 1994. The Fossils of the Burgess Shale. Smithsonian Institution Press, Washington, D.C., 238 p.Google Scholar
Briggs, D. E. G., Fortey, R. A., and Wills, M. A. 1992. Morphologic disparity in the Cambrian. Science, 256:16701673.CrossRefGoogle Scholar
Budd, G. E. 1995. Kleptothule rasmusseni gen. et sp. nov.: an? olenel-linid-like trilobite from the Sirius Passet fauna (Buen Formation, Lower Cambrian, north Greenland). Transactions of the Royal Society of Edinburgh, Earth Sciences, 86:112.CrossRefGoogle Scholar
Budd, G. E. 1996. The morphology of Opabinia regalis and the reconstruction of the arthropod stem-group. Lethaia, 29:114.CrossRefGoogle Scholar
Budd, G. E. 1998. Stem group arthropods from the Lower Cambrian Sirius Passet fauna of North Greenland, p. 125138. In Fortey, R. A. and Thomas, R. H. (eds.), Arthropod Relationships. Chapman and Hall, London.CrossRefGoogle Scholar
Budd, G. E. 1999. The morphology and phylogenetic significance of Kerygmachela kierkegaardi Budd (Buen Formation, Lower Cambrian, North Greenland). Transactions of the Royal Society of Edinburgh, Earth Sciences, 89:249290.CrossRefGoogle Scholar
Budd, G. E. 2001. Tardigrades as ‘stem-group arthropods’: the evidence from the Cambrian fauna. Zoologisches Anzeiger, 240:265279.CrossRefGoogle Scholar
Budd, G. E. 2002. A paleontological solution to the arthropod head problem. Nature, 417:271275.CrossRefGoogle Scholar
Budd, G. E., and Jensen, S. 2000. A critical reappraisal of the fossil record of the bilaterian phyla. Biological Reviews, 75:253295.CrossRefGoogle ScholarPubMed
Butterfield, N. J. 1990. Organic preservation of non-mineralizing organisms and the taphonomy of the Burgess Shale. Paleobiology, 16:272286.CrossRefGoogle Scholar
Butterfield, N. J., and Nicholas, C. J. 1996. Burgess Shale-type preservation of both non-mineralizing and ‘shelly’ Cambrian organisms from the Mackenzie Mountains, northwestern Canada. Journal of Paleontology, 70:893899.CrossRefGoogle Scholar
Campbell, L., and Kauffman, M. E. 1969. Olenellus fauna of the Kinzers Formation, southeastern Pennsylvania. Proceedings of the Pennsylvania Academy of Science, 43:172176.Google Scholar
Chen, J. Y., Ramsköld, L., and Zhou, G. Q. 1994. Evidence for monophyly and arthropod affinity of Cambrian giant predators. Science, 264:13041308.CrossRefGoogle ScholarPubMed
Chen, J. Y., Edgecombe, G. D., Ramsköld, L., and Zhou, G. Q. 1995. Head segmentation in Early Cambrian Fuxianhuia: implications for arthropod evolution. Science, 268:13391343.CrossRefGoogle ScholarPubMed
Chen, J. Y., Zhou, G. Q., Zhu, M. Y., and Yeh, K. Y. 1996. The Chengjiang biota: a unique window of the Cambrian explosion. National Museum of Taiwan, 222 p.Google Scholar
Collins, D. 1992. Whither Anomalocaris? The search in the Burgess Shale continues. Fifth North American Paleontological Convention, Abstracts and Program. Paleontological Society Publication, 6:66.CrossRefGoogle Scholar
Collins, D. 1996. The “evolution” of Anomalocaris and its classification in the arthropod Class Dinocarida (nov.) and Order Radiodonta (nov.). Journal of Paleontology, 70:280293.CrossRefGoogle Scholar
Collins, D., Briggs, D. E. G., and Morris, S. Conway 1983. New Burgess Shale fossil sites reveal Middle Cambrian faunal complex. Science, 222:163167.CrossRefGoogle ScholarPubMed
Morris, S. Conway 1977. Fossil priapulid worms. Special Papers in Palaeontology, 20:195.Google Scholar
Morris, S. Conway 1985. Cambrian lagerstätten: their distribution and significance. Philosophical Transactions of the Royal Society of London, Series B, 307:507582.Google Scholar
Morris, S. Conway 1989a. Burgess Shale faunas and the Cambrian explosion. Science, 246:339346.CrossRefGoogle Scholar
Morris, S. Conway 1989b. The persistence of Burgess Shale-type faunas: implications for the evolution of deep-water faunas. Transactions of the Royal Society of Edinburgh, 80:271283.CrossRefGoogle Scholar
Morris, S. Conway 1992. Burgess Shale-type faunas in the context of the ‘Cambrian explosion’: a review. Journal of the Geological Society, London, 149:631636.CrossRefGoogle Scholar
Morris, S. Conway 1993. The fossil record and the early evolution of the Metazoa. Nature, 361:219225.CrossRefGoogle Scholar
Morris, S. Conway 2000. The Cambrian “explosion”: slow-fuse or megatonnage? Proceedings of the National Academy of Sciences, USA, 97:44264429.CrossRefGoogle Scholar
Morris, S. Conway, and Robison, R. A. 1986. Middle Cambrian priapulids and other soft-bodied fossils from Utah and Spain. The University of Kansas Paleontological Contributions, 117:122.Google Scholar
Copeland, M. J. 1993. Anomalocaris (of unknown affinity) and Tuzoia (a possible arthropod) from the Lower Cambrian Eager Formation near Cranbrook, British Columbia. Geological Survey of Canada Bulletin, 444:15.Google Scholar
Dewel, R. A., and Dewel, W. C. 1998. The place of tardigrades in arthropod evolution, p. 109123. In Fortey, R. A. and Thomas, R. H. (eds.), Arthropod Relationships. Chapman and Hall, London.CrossRefGoogle Scholar
Dzik, J., and Lendzion, K. 1988. The oldest arthropods of the east European platform. Lethaia, 21:2938.CrossRefGoogle Scholar
Edgecombe, G. D. 1998. Arthropod Fossils and Phylogeny. Columbia University Press, New York, 347 p.Google Scholar
Edgecombe, G. D. 1998. Introduction: the role of extinct taxa in arthropod phylogeny, p. 17. In Edgecombe, G. D. (ed.), Arthropod Fossils and Phylogeny. Columbia University Press, New York.Google Scholar
Eldredge, N. 1979. Alternative approaches to evolutionary theory. Bulletin of the Carnegie Museum of Natural History, 13:719.Google Scholar
Fortey, R. A., and Thomas, R. H. 1998. Arthropod Relationships. Chapman and Hall, London, 383 p.CrossRefGoogle Scholar
Fortey, R. A., Briggs, D. E. G., and Wills, M. A. 1996. The Cambrian evolutionary ‘explosion’: decoupling cladogenesis from morphological disparity. Biological Journal of the Linnean Society, 57:1333.Google Scholar
Capdevila, D. Garcia-Bellido, and Morris, S. Conway 1999. New fossil worms from the Lower Cambrian of the Kinzers Formation, Pennsylvania, with some comments on Burgess Shale-type preservation. Journal of Paleontology, 73:394402.CrossRefGoogle Scholar
Glaessner, M. F. 1979. Lower Cambrian Crustacea and annelid worms from Kangaroo Island, South Australia. Alcheringa, 3:2131.CrossRefGoogle Scholar
Gould, S. J. 1989. Wonderful Life. W. W. Norton, New York, 347 p.Google Scholar
Gould, S. J. 1991. The disparity of the Burgess Shale arthropod fauna and the limits of cladistic analysis: why we must strive to quantify morphospace. Paleobiology, 17:411423.CrossRefGoogle Scholar
Hansen, T. A. 1982. Modes of larval development in Early Tertiary neogastropods. Paleobiology, 8:367377.CrossRefGoogle Scholar
Hou, X., and Bergström, J. 1991. The arthropods of the Lower Cambrian Chengjiang fauna, with relationships and evolutionary significance, p. 179187. In Simonetta, A. M. and Morris, S. Conway (eds.), The Early Evolution of Metazoa and the Significance of Problematic Taxa. Cambridge University Press, Cambridge.Google Scholar
Hou, X., and Bergström, J. 1997. Arthropods of the Lower Cambrian Chengjiang fauna, southwest China. Fossils and Strata, 45:1116.Google Scholar
Hou, X., Bergström, J., and Ahlberg, P. 1995. Anomalocaris and other large animals in the Lower Cambrian Chengjiang fauna of southwest China. Geologiska Föreningens i Stockholm Forhandlingar, 117:163183.Google Scholar
Kajiwara, Y., Yamakita, S., Ishida, K., Ishiga, H., and Imaj, A. 1994. Development of a largely anoxic stratified ocean and its temporary massive mixing at the Permian-Triassic boundary supported by the sulfur isotopic record. Palaeogeography, Palaeoclimatology, Palaeocecology, 111:367379.CrossRefGoogle Scholar
Latreille, P. A. 1806. Histoire naturelle, générale et particulière, des Crustacés et des Insectes. In In de Buffon, L. (ed.), Histoire Naturelle, Volume 80. Dufart, Paris, 408 p.Google Scholar
Lieberman, B. S. 1997. Early Cambrian paleogeography and tectonic history: a biogeographic approach. Geology, 25:10391042.2.3.CO;2>CrossRefGoogle Scholar
Lieberman, B. S. 1999. Systematic revision of the Olenelloidea (Trilobita, Cambrian). Bulletin of the Yale University Peabody Museum of Natural History, 45:1150.Google Scholar
Lieberman, B. S. 2001. Phylogenetic analysis of the Olenellina Walcott, 1890 (Trilobita, Cambrian). Journal of Paleontology, 75:96115.2.0.CO;2>CrossRefGoogle Scholar
Masiak, M., and Zylinska, A. 1994. Burgess Shale-type fossils in Cambrian sandstones of the Holy Cross mountains. Acta Palaeontologica Polonica, 39:329340.Google Scholar
McHenry, B., and Yates, A. 1993. First report of the enigmatic metazoan Anomalocaris from the southern hemisphere and a trilobite with preserved appendages from the Early Cambrian of Kangaroo Island, South Australia. Records of the South Australian Museum, 26:7786.Google Scholar
McKenzie, K. G., Angel, M. V., Becker, G., Hinz-Schallreuter, I., Kontrovitz, M., Parker, A. R., Schallreuter, R. E. L., and Swanson, K. M. 1999. Ostracods, p. 459507. In Savazzi, E. (ed.), Functional Morphology of the Invertebrate Skeleton. John Wiley & Sons, New York.Google Scholar
Montañez, I. P., Osleger, D. A., Banner, J. L., Mack, L. E., and Musgrove, M. L. 2000. Evolution of the Sr and C isotope composition of Cambrian oceans. GSA Today, 10:17.Google Scholar
Nedin, C. 1995. The Emu Bay Shale, a Lower Cambrian fossil lagerstätte, Kangaroo Island, South Australia. Memoirs of the Association of Australasian Palaeontologists, 18:3140.Google Scholar
Novozhilov, N. I. 1960. Podklass Pseudocrustacea. In Orlov, Y. A. (ed.), Osnovy Paleontologii, Arthropoda, Trilobitomorpha, and Crustacea. Nedra, Moscow, p. 199.Google Scholar
Okada, Y. 1981. Development of cell arrangement in ostracod carapaces. Paleobiology, 7:276281.CrossRefGoogle Scholar
Orr, P. J., Briggs, D. E. G., and Kearns, S. L. 1998. Cambrian Burgess Shale animals replicated in clay minerals. Science, 281:11731175.CrossRefGoogle ScholarPubMed
Packard, A. S. 1879. The nebaliad Crustacea as types of a new order. American Naturalist, 13:128.Google Scholar
Palmer, A. R. 1998. Terminal Early Cambrian extinction of the Olenellina: Documentation from the Pioche Formation, Nevada. Journal of Paleontology, 72:650672.CrossRefGoogle Scholar
Palmer, A. R., and Halley, R. B. 1979. Physical stratigraphy and trilobite biostratigraphy of the Carrara Formation (Lower and Middle Cambrian) in the southern Great Basin. U. S. Geological Survey Professional Paper, 1087:1131.Google Scholar
Raymond, P. E. 1935. Leanchoilia and other Mid-Cambrian Arthropoda. Bulletin of the Museum of Comparative Zoology, Harvard University, 76:205230.Google Scholar
Resser, C. E. 1929. New Lower and Middle Cambrian Crustacea. Proceedings of the United States National Museum, 76:118.CrossRefGoogle Scholar
Resser, C. E. 1938. Cambrian System (restricted) of the southern Appalachians. Geological Society of America Special Paper, 15:1140.Google Scholar
Resser, C. E., and Howell, B. F. 1938. Lower Cambrian Olenellus Zone of the Appalachians. Geological Society of America Bulletin, 49:195248.CrossRefGoogle Scholar
Robison, R. A. 1971. Additional Middle Cambrian trilobites from the Wheeler Shale of Utah. Journal of Paleontology, 45:796804.Google Scholar
Robison, R. A. 1991. Middle Cambrian biotic diversity: examples from four Utah lagerstätten, p. 7798. In Simonetta, A. and Morris, S. Conway (eds.), The Early Evolution of Metazoa and the Significance of Problematic Taxa. Cambridge University Press, Cambridge, UK.Google Scholar
Robison, R. A., and Richards, B. C. 1981. Large bivalve arthropods from the Middle Cambrian of Utah. The University of Kansas Paleontological Contributions, 106:128.Google Scholar
Robison, R. A., and Wiley, E. O. 1995. A new arthropod, Meristosoma: more fallout from the Cambrian explosion. Journal of Paleontology, 69:447459.CrossRefGoogle Scholar
Rolfe, W. D. I. 1962. Two new arthropod carapaces from the Burgess Shale (Middle Cambrian) of Canada. Breviora, 160:19.Google Scholar
Rolfe, W. D. I. 1969. Phyllocarida. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, R (Arthropoda 4, Volume 1). Geological Society of America and University of Kansas Press, Lawrence, KS.Google Scholar
Schram, F. R., and Hof, C. H. J. 1998. Fossils and the interrelationships of major crustacean groups, p. 233302. In Edgecombe, G. D. (ed.), Arthropod Fossils and Phylogeny. Columbia University Press, New York.Google Scholar
Shields, G. 1998. What are lagerstätten? Lethaia, 31:124.CrossRefGoogle Scholar
Simonetta, A. M., and Cave, L. Delle 1975. The Cambrian nontrilobite arthropods from the Burgess Shale of British Columbia. A study of their comparative morphology, taxonomy, and evolutionary significance. Palaeontographica Italica, 69:137.Google Scholar
Sundberg, F. A., and McCollum, L. B. 2000. Ptychopariid trilobites of the Lower-Middle Cambrian boundary interval, Pioche Shale, southeastern Nevada. Journal of Paleontology, 74:604630.CrossRefGoogle Scholar
Vrba, E. S. 1980. Evolution, species and fossils: How does life evolve? South African Journal of Science, 76:6184.Google Scholar
Walcott, C. D. 1911a. Cambrian Geology and Paleontology II. Middle Cambrian annelids. Smithsonian Miscellaneous Collections, 57:109144.Google Scholar
Walcott, C. D. 1911b. Middle Cambrian Merostomata. Cambrian geology and paleontology II. Smithsonian Miscellaneous Collections, 57:1740.Google Scholar
Walcott, C. D. 1912. Cambrian Geology and Paleontology II. Middle Cambrian Branchiopoda, Malacostraca, Trilobita, and Merostomata. Smithsonian Miscellaneous Collections, 57:145228.Google Scholar
Walossek, D., and Müller, K. J. 1998. Early arthropod phylogeny in light of the Cambrian “Orsten” fossils, p. 185231. In Edgecombe, G. D. (ed.), Arthropod Fossils and Phylogeny. Columbia University Press, New York.Google Scholar
Wanner, A. 1901. A new species of Olenellus from the Lower Cambrian of York County, Pennsylvania Proceedings of the Washington Academy of Sciences, 3:267272.Google Scholar
Westrop, S. R., and Ludvigsen, R. 1987. Biogeographic control of trilobite mass extinction at an Upper Cambrian “biomere” boundary. Paleobiology, 13:8499.CrossRefGoogle Scholar
Whiteaves, J. F. 1892. Description of a new genus and species of phyllocarid crustacea from the Middle Cambrian of Mount Stephen, B.C. Canadian Record of Science, 5:205208.Google Scholar
Whittington, H. B. 1974. Yohoia Walcott and Plenocaris n. gen., arthropods from the Burgess Shale, Middle Cambrian, British Columbia. Geological Survey of Canada Bulletin, 231:121.Google Scholar
Whittington, H. B. 1985. The Burgess Shale. Yale University Press, New Haven, Connecticut, 151 p.Google Scholar
Whittington, H. B., and Briggs, D. E. G. 1985. The largest Cambrian animal, Anomalocaris, Burgess Shale, British Columbia. Philosophical Transactions of the Royal Society of London, Series B, 309:569609.Google Scholar
Wilde, P., and Berry, W. B. N. 1984. Destabilization of the oceanic density structure and its significance to marine ‘extinction’ events. Palaeogeography, Palaeoclimatology, Palaeocecology, 48:143162.CrossRefGoogle Scholar
Williams, M., Siveter, D. J., and Peel, J. S. 1996. Isoxys (Arthropoda) from the Early Cambrian Sirius Passet Lagerstätte, north Greenland. Journal of Paleontology, 70:947954.CrossRefGoogle Scholar
Wills, M. A. 1998a. A phylogeny of recent and fossil Crustacea derived from morphological characters, p. 189209. In Fortey, R. A. and Thomas, R. H. (eds.), Arthropod Relationships. Chapman and Hall, London.CrossRefGoogle Scholar
Wills, M. A. 1998b. Crustacean disparity through the Phanerozoic: Comparing morphological and stratigraphic data. Biological Journal of the Linnean Society, 65:455500.CrossRefGoogle Scholar
Wills, M. A. 1998c. Cambrian and Recent disparity: the picture from priapulids. Paleobiology, 24:177199.Google Scholar
Wills, M. A., Briggs, D. E. G., Fortey, R. A., Wilkinson, M., and Sneath, P. H. A. 1998. An arthropod phylogeny based on fossil and recent taxa, p. 33105. In Edgecombe, G. D. (ed.), Arthropod Fossils and Phylogeny. Columbia University Press, New York.Google Scholar
Zhang, X., Shu, D., Li, Y., and Han, J. 2001. New sites of Chengjiang fossils: crucial windows on the Cambrian explosion. Journal of the Geological Society, London, 158:211218.CrossRefGoogle Scholar