Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-25T19:41:16.320Z Has data issue: false hasContentIssue false

New neoplagiaulacid multituberculates (Mammalia: Allotheria) from the Paleocene of Alberta, Canada

Published online by Cambridge University Press:  20 May 2016

Craig S. Scott*
Affiliation:
Laboratory for Vertebrate Paleontology, Department of Biological Sciences, University of Alberta, Edmonton T6G 2E9, Canada,

Abstract

Neoplagiaulacid multituberculates are among the most numerous and best represented members of early Cenozoic North American mammal faunas, achieving their greatest diversity during the Paleocene. Despite their relatively dense record in the Torrejonian (middle Paleocene) and Tiffanian (late Paleocene), the study of early Cenozoic neoplagiaulacids has been limited more often than not to isolated teeth or, more rarely, incomplete skull, gnathic, or postcranial remains. The current study reports on new neoplagiaulacid multituberculates from the Paleocene Paskapoo Formation of central Alberta, Canada, at localities along the Blindman River near the City of Red Deer. The exceptionally well-preserved specimens consist of incomplete articulated and associated skull and gnathic remains, and collectively document four new species: Ectypodus elaphus, Neoplagiaulax serrator, Neoplagiaulax paskapooensis, and Neoplagiaulax cimolodontoides. Neoplagiaulax paskapooensis is the most dentally complete neoplagiaulacid so far discovered, with a single specimen documenting for the first time left and right I2 and I3 in situ with the cheek teeth, along with the associated lower dentition. Specimens of Neoplagiaulax cimolodontoides record important details of the rostrum and palate, and provide the first direct evidence of incisor replacement in Neoplagiaulax. The new neoplagiaulacids, together with other multituberculates from the Blindman River localities, document unusually high multituberculate diversity in the latter half of the Tiffanian in western Canada. Despite superficial similarity to some European species of Neoplagiaulax, the new taxa from the Paskapoo Formation apparently show no closer relationship to these than do other North American congeners, suggesting parallel evolution in endemic North America and western European clades.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ameghino, F. 1890. Los plagiaulacideos argentinos y sus relaciones zoológicas, geológicas, y geográficas. Boletín des Instituto geográfico argentino, 11:143201.Google Scholar
Archibald, J. D. 1982. A study of Mammalia and geology across the Cretaceous–Tertiary boundary in Garfield County, Montana. University of California Publications in Geological Science, 122:11286.Google Scholar
Archibald, J. D., Clemens, W. A., Gingerich, P. D., Krause, D. W., Lindsay, E. H., and Rose, K. D. 1987. First North American land mammal ages of the Cenozoic Era, p. 2476. In Woodburne, M. O. (ed.), Cenozoic Mammals of North America, Geochronology and Biostratigraphy. University of California Press, Berkeley.Google Scholar
Behrensmeyer, A. K. 1991. Terrestrial vertebrate accumulations, p. 291335. In Allison, P. A. and Briggs, D. E. G. (eds.), Topics in Geo-biology. Volume 9. Taphonomy; Releasing the Data Locked in the Fossil Record. Plenum Press, New York.Google Scholar
Carrigy, M. A. 1970. Proposed revision of the boundaries of the Paskapoo Formation in the Alberta Plains. Bulletin of Canadian Petroleum Geology, 18:156165.Google Scholar
Clemens, W. A. Jr. 1964. Fossil mammals of the type Lance Formation, Wyoming, Part I. Introduction and Multituberculata. University of California Publications in Geological Sciences, 48:1105. [Dated 1963] Google Scholar
Clemens, W. A. Jr. 1966. Fossil mammals of the type Lance Formation, Wyoming, Pt. II, Marsupialia. University of California Publications in Geological Sciences, 66:1122.Google Scholar
Clemens, W. A. Jr., and Kielan-Jaworowska, Z. 1979. Multituberculata, p. 99149. In Lillegraven, J. A., Kielan-Jaworowska, Z., and Clemens, W. A. (eds.), Mesozoic Mammals: The First Two-Thirds of Mammalian History. University of California Press, Berkeley.Google Scholar
Cope, E. D. 1882. Mammalia in the Laramie Formation. American Naturalist, 16:830831.Google Scholar
Cope, E. D. 1884. The Tertiary Marsupialia. American Naturalist, 18:686697.Google Scholar
Dawson, F. M., Evans, C. G., Marsh, R., and Richardson, R. 1994. Chapter 24. Uppermost Cretaceous and Tertiary strata of the western Canada sedimentary basin, p. 387406. In Mossop, G. D. and Shetsen, I. (comps.), Geological Atlas of the Western Canada Sedimentary Basin. Canadian Society of Petroleum Geologists and Alberta Research Council, Calgary and Edmonton, Alberta.Google Scholar
Demchuk, T. D. 1990. Palynostratigraphic zonation of Paleocene strata in the central and south-central Alberta Plains. Canadian Journal of Earth Sciences, 27:12631269.Google Scholar
Demchuk, T. D., and Hills, L. V. 1991. A re-examination of the Paskapoo Formation in the central Alberta Plains: The designation of three new members. Bulletin of Canadian Petroleum Geology, 39:270282.Google Scholar
Douglass, E. 1908. Vertebrate fossils from the Fort Union beds. Annals of Carnegie Museum, 5:1126.Google Scholar
Fox, R. C. 1968. Studies of Late Cretaceous vertebrates II. Generic diversity among multituberculates. Systematic Zoology, 17:339342.Google Scholar
Fox, R. C. 1971. Early Campanian multituberculates (Mammalia: Allotheria) from the Upper Milk River Formation, Alberta. Canadian Journal of Earth Sciences, 8:916938.Google Scholar
Fox, R. C. 1990. The succession of Paleocene mammals in western Canada, p. 5170. In Bown, T. M. and Rose, K. D. (eds.), Dawn of the Age of Mammals in the Northern Part of the Rocky Mountain Interior, North America. Geological Society of America Special Paper, 243.Google Scholar
Fox, R. C. 2005. Microcosmodontid multituberculates (Allotheria, Mammalia) from the Paleocene and Late Cretaceous of western Canada. Palaeontographica Canadiana, 23:1109.Google Scholar
Gambaryan, P. P., and Kielan-Jaworowska, Z. 1995. Masticatory musculature of Asian taeniolabidoid multituberculate mammals. Acta Palaeontologica Polonica, 40:45108.Google Scholar
Gidley, J. W. 1923. Paleocene primates from the Fort Union, with discussion of relationships of Eocene primates. Proceedings of the U.S. National Museum, 63:138.Google Scholar
Goto, S., and Weil, A. 1997. No species differentiation in Lance Mesodma (Multituberculata, Mammalia) using variation in molar morphology. Journal of Vertebrate Paleontology, 17 suppl. to no. 3:50A.Google Scholar
Greenwald, N. B. 1988. Patterns of tooth eruption and replacement in multituberculate mammals. Journal of Vertebrate Paleontology, 8:265277.CrossRefGoogle Scholar
Hahn, G. 1987. Neue Beobachtungen zum Schädel- und Gebiss-Bau der Paulchoffatiidae (Multituberculata, Ober-Jura). Palaeovertebrata, 17:155196.Google Scholar
Higgins, P. 2003. A new species of Paleocene multituberculate (Mammalia: Allotheria) from the Hanna Basin, south-central Wyoming. Journal of Vertebrate Paleontology, 23:468470.Google Scholar
Hoffman, G. L., and Stockey, R. A. 1999. Geological setting and paleobotany of the Joffre Bridge Roadcut fossil locality (Late Paleocene), Red Deer Valley, Alberta. Canadian Journal of Earth Sciences, 36:20732084.Google Scholar
Holtzman, R. C. 1978. Late Paleocene mammals of the Tongue River Formation, western North Dakota. Report of Investigation, North Dakota Geological Survey, 65:188.Google Scholar
Hunter, J. P., Hartman, J. H., and Krause, D. W. 1997. Mammals and mollusks across the Cretaceous–Tertiary boundary from Makoshika State Park and vicinity (Williston Basin), Montana. University of Wyoming Contributions to Geology, 32:61114.Google Scholar
Jepsen, G. L. 1930. New vertebrate fossils from the lower Eocene of the Bighorn Basin, Wyoming. Proceedings of the American Philosophical Society, 69:117131.Google Scholar
Jepsen, G. L. 1940. Paleocene faunas of the Polecat Bench Formation, Wyoming. Proceedings of the American Philosophical Society, 83:217340.Google Scholar
Johnston, P. A., and Fox, R. C. 1984. Paleocene and Late Cretaceous mammals from Saskatchewan, Canada. Palaeontographica (A), 186:163222.Google Scholar
Kidwell, S. M., and Holland, S. M. 2002. The quality of the fossil record: Implications for evolutionary analyses. Annual Review of Ecology and Systematics, 33:561588.Google Scholar
Kielan-Jaworowska, Z. 1970. Results of the Polish-Mongolian palaeontological expeditions, Pt. II, New Upper Cretaceous multituberculate genera from Bayn Dzak, Gobi Desert. Palaeontologia Polonica, 21:3549. (Dated 1969) Google Scholar
Kielan-Jaworowska, Z. 1974. Results of the Polish-Mongolian Palaeontological Expeditions, Pt. V, Multituberculate succession in the Late Cretaceous of the Gobi Desert (Mongolia). Palaeontologia Polonica, 30:2344.Google Scholar
Kielan-Jaworowska, Z., and Hurum, J. H. 1997. Djadochtatheria—a new suborder of multituberculate mammals. Acta Palaeontologica Polonica, 42:201242.Google Scholar
Kielan-Jaworowska, Z., and Hurum, J. H. 2001. Phylogeny and systematics of multituberculate mammals. Palaeontology, 44:389429.CrossRefGoogle Scholar
Krause, D. W. 1977. Paleocene multituberculates (Mammalia) of the Roche Percée local fauna, Ravenscrag Formation, Saskatchewan, Canada. Palaeontographica (A), 186:136.Google Scholar
Krause, D. W. 1978. Paleocene primates from western Canada. Canadian Journal of Earth Sciences, 15:12501271.Google Scholar
Krause, D. W. 1980. Multituberculates from the Clarkforkian Land-Mammal Age, late Paleocene–early Eocene, of western North America. Journal of Paleontology, 54:11631183.Google Scholar
Krause, D. W. 1982a. Multituberculates from the Wasatchian Land-Mammal Age, early Eocene, of western North America. Journal of Paleontology, 56:271294.Google Scholar
Krause, D. W. 1982b. Evolutionary history and paleobiology of early Cenozoic Multituberculata (Mammalia), with emphasis on the family Ptilodontidae. Unpublished Ph.D. dissertation, The University of Michigan, Ann Arbor, 575 p.Google Scholar
Krause, D. W. 1982c. Jaw movement, dental function, and diet in the Paleocene multituberculate Ptilodus . Paleobiology, 8:265281.Google Scholar
Krause, D. W. 1986. Competitive exclusion and taxonomic displacement in the fossil record; the case of rodents and multituberculates in North America. University of Wyoming Contributions to Geology Special Paper, 3:95117.Google Scholar
Krause, D. W. 1987. Baiotomeus, a new ptilodontid multituberculate (Mammalia) from the middle Paleocene of western North America. Journal of Paleontology, 61:595603.Google Scholar
Krause, D. W., and Gingerich, P. D. 1983. Mammalian fauna from Douglass Quarry, earliest Tiffanian (late Paleocene) of the eastern Crazy Mountain Basin, Montana. Contributions from the Museum of Paleontology, The University of Michigan, 26:157196.Google Scholar
Krause, D. W., and Jenkins, F. A. Jr. 1983. The postcranial skeleton of North American multituberculates. Bulletin of the Museum of Comparative Zoology, 150:199246.Google Scholar
Krause, D. W., and Maas, M. C. 1990. The biogeographic origins of late Paleocene–early Eocene mammalian immigrants to the Western Interior of North America, p. 71105. In Bown, T. M. and Rose, K. D. (eds.), Dawn of the Age of Mammals in the Northern Part of the Rocky Mountain Interior, North America. Geological Society of America Special Paper, 243.Google Scholar
Krishtalka, L. 1973. Late Paleocene mammals from the Cypress Hills, Alberta. Special Publications of the Museum, Texas Tech University, 2:177.Google Scholar
Krishtalka, L. 1984. Early Eocene multituberculates (Mammalia: Allotheria) from the Bighorn Basin, Wyoming. Carnegie Museum of Natural History Special Publications, 9:2127.Google Scholar
Kühne, W. G. 1969. A multituberculate from the Eocene of the London Basin. Proceedings of the Geological Society of London, 1658:199202.Google Scholar
Lemoine, V. 1880. Communication sur les Ossements fossiles des terrains tertiaires inférieurs. Association Française pour l'Avancement des Sciences, Reims, p. 340.Google Scholar
Lemoine, V. 1882. Sur deux Plagiaulax tertiaires, recueillis aux environs de Reims. Comptes Rendus de l'Academie des Sciences, Paris, 95:10091011.Google Scholar
Lerbekmo, J. F., Evans, M. E., and Hoye, G. S. 1990. Magnetostrati-graphic evidence bearing on the magnitude of the sub-Paskapoo dis-conformity in the Scollard Canyon-Ardley area of the Red Deer Valley, Alberta. Bulletin of Canadian Petroleum Geology, 38:197202.Google Scholar
Lillegraven, J. A. 1969. Latest Cretaceous mammals of upper part of the Edmonton Formation of Alberta, Canada, and a review of marsupial-placental dichotomy in mammalian evolution. The University of Kansas Paleontological Contributions, 50 (Vertebrata 12):1122.Google Scholar
Linnaeus, C. 1758. Systema naturae per regna tria naturae, secundum classes, ordines, genera, species cum characteribus, differentiis, synonymis, locis. Tomus I: Regnum animale (editio decima, reformata). Laurentii Salvii, Stockholm. (Facsimile reprinted in 1956 by the British Museum of Natural History) Google Scholar
MacDonald, T. 1996. Late Paleocene (Tiffanian) mammal-bearing localities in superposition, from near Drumheller, Alberta. Unpublished , , 248 p.Google Scholar
Marsh, O. C. 1880. Notice of Jurassic mammals representing two new orders. American Journal of Science, 11:425428.Google Scholar
Marsh, O. C. 1889. Discovery of Cretaceous Mammalia. American Journal of Science, 38:8192.Google Scholar
Matthew, W. D., and Granger, W. 1921. New genera of Paleocene mammals. American Museum Novitates, 13:17.Google Scholar
Matthew, W. D., and Granger, W. 1925. Fauna and correlation of the Gashato Formation of Mongolia. American Museum Novitates, 189:112.Google Scholar
McKenna, M. C. 1975. Toward a phylogenetic classification of the Mammalia, p. 2146. In Luckett, W. P. and Szalay, F. S. (eds.), Phylogeny of the Primates. Plenum Press, New York.Google Scholar
McLean, J. R. 1990. Paskapoo Formation, p. 480481. In Glass, D. J. (ed.), Lexicon of Canadian Stratigraphy. Vol. 4. Western Canada. Canadian Society of Petroleum Geologists, Calgary, Alberta.Google Scholar
Miao, D. 1988. Skull morphology of Lambdopsalis bulla (Mammalia, Multituberculata) and its implications to mammalian evolution. Contributions to Geology, University of Wyoming Special Paper, 4:1104.Google Scholar
Novacek, M., and Clemens, W. A. 1977. Aspects of intrageneric variation and evolution of Mesodma (Multituberculata, Mammalia). Journal of Paleontology, 51:701717.Google Scholar
O'Farrell, M. J. 1980. Spatial relationships of rodents in a sagebrush community. Journal of Mammalogy, 61:589605.CrossRefGoogle Scholar
Ramaekers, P. 1975. Using polar coordinates to measure variability in samples of Phenacolemur: A method of approach, p. 106135. In Szalay, F. S. (ed.), Approaches to Primate Paleobiology. Contributions to Primatology, 5.Google Scholar
Rickart, E. A., and Heany, L. R. 2001. Shrews of the La Sal Mountains, southeastern Utah. Western North American Naturalist, 61:103108.Google Scholar
Rigby, J. K. Jr. 1980. Swain Quarry of the Fort Union Formation, middle Paleocene (Torrejonian), Carbon County, Wyoming: Geologic setting and mammalian fauna. Evolutionary Monographs, 3:1179.Google Scholar
Rose, K. D. 1981a. The Clarkforkian Land Mammal Age and mammalian faunal composition across the Paleocene–Eocene boundary. The University of Michigan Papers on Paleontology, 26:1197.Google Scholar
Rose, K. D. 1981b. Composition and species diversity in Paleocene and Eocene mammal assemblages; an empirical study. Journal of Vertebrate Paleontology, 1:367388.Google Scholar
Rougier, G. W., Novacek, M. J., and Dashzeveg, D. 1997. A new multituberculate from the Late Cretaceous locality Ukhaa Tolgod, Mongolia. Considerations on multituberculate interrelationships. American Museum Novitates, 3191:126.Google Scholar
Russell, D. E. 1964. Les Mammifères paléocènes d'Europe. Mémoirs du Museum National d'Histoire Naturelle (France), n. s., série C, 13:1321.Google Scholar
Russell, L. S. 1929. Paleocene vertebrates from Alberta. American Journal of Science, 17:162178.Google Scholar
Russell, L. S. 1932. New data on the Paleocene mammals from Alberta, Canada. Journal of Mammalogy, 13:3854.Google Scholar
Russell, L. S. 1967. Paleontology of the Swan Hills area, north-central Alberta. Royal Ontario Museum Life Sciences Contributions, 71:131.Google Scholar
Savage, D. E., and Russell, D. E. 1983. Mammalian Paleofaunas of the World. Addison-Wesley, London, 432 p.Google Scholar
Schiebout, J. A. 1974. Vertebrate paleontology and paleoecology of Paleocene Black Hills Formation, Big Bend National Park, Texas. Bulletin of the Texas Memorial Museum, 24:188.Google Scholar
Scott, C. S. 2003. Late Torrejonian (middle Paleocene) mammals from south central Alberta, Canada. Journal of Paleontology, 77:745768.Google Scholar
Scott, C. S. 2004. A new species of the ptilodontid multituberculate Prochetodon (Mammalia, Allotheria) from the Paleocene Paskapoo Formation of Alberta, Canada. Canadian Journal of Earth Sciences, 41:237246.Google Scholar
Scott, C. S., and Fox, R. C. 2005. Windows on the evolution of Picrodus (Plesiadapiformes: Primates): Morphology and relationships of a species complex from the Paleocene of Alberta. Journal of Paleontology, 79:635657.Google Scholar
Scott, C. S., Fox, R. C., and Youzwyshyn, G. P. 2002. New earliest Tiffanian (late Paleocene) mammals from Cochrane 2, southwestern Alberta, Canada. Acta Palaeontologica Polonica, 47:691704.Google Scholar
Simmons, N. B. 1993. Phylogeny of Multituberculata, p. 146164. In Szalay, F. S., Novacek, M. J., and McKenna, M. C. (eds.), Mammal Phylogeny: Mesozoic Differentiation, Multituberculates, Monotremes, Early Therians and Marsupials. Springer-Verlag, New York.Google Scholar
Simpson, G. G. 1925. A Mesozoic mammal skull from Mongolia. American Museum Novitates, 201:111.Google Scholar
Simpson, G. G. 1926. Mesozoic Mammalia: IV. The multituberculates as living animals. American Journal of Science, 11:228250.Google Scholar
Simpson, G. G. 1935. New Paleocene mammals from the Fort Union of Montana. Proceedings of the United States National Museum, 83:221244.Google Scholar
Simpson, G. G. 1936. A new fauna from the Fort Union of Montana. American Museum Novitates, 873:127.Google Scholar
Simpson, G. G. 1937a. Skull structure of the Multituberculata. Bulletin of the American Museum of Natural History, 73:727763.Google Scholar
Simpson, G. G. 1937b. The Fort Union of the Crazy Mountain Field, Montana and its mammalian faunas. Bulletin of the United States Museum, 169:1287.Google Scholar
Sloan, R. E. 1979. Multituberculata, p. 492498. In Fairbridge, R. W. and Jablonski, D. (eds.), The Encyclopedia of Paleontology. Dowden, Hutchinson, and Ross, Inc., Stroudsburg, Pennsylvania.CrossRefGoogle Scholar
Sloan, R. E. 1981. Systematics of Paleocene multituberculates from the San Juan Basin, New Mexico, p. 127160. In Lucas, S. G., Rigby, J. K. Jr., and Kues, B. (eds.), Advances in San Juan Basin Paleontology. University of New Mexico Press, Albuquerque.Google Scholar
Sloan, R. E. 1987. Paleocene and latest Cretaceous mammals, rates of sedimentation and evolution, p. 165200. In Fassett, J. E. and Rigby, J. K. Jr. (eds.), The Cretaceous-Tertiary Boundary in the San Juan and Raton Basins, New Mexico and Colorado. Geological Society of America Special Paper, 209.Google Scholar
Sloan, R. E., and Van Valen, L. 1965. Cretaceous mammals from Montana. Science, 148:220227.Google Scholar
Szalay, F. S. 1965. First evidence of tooth replacement in the Subclass Allotheria (Mammalia). American Museum Novitates, 2226:112.Google Scholar
Tong, Y., and Wang, J. 1994. A new neoplagiaulacid multituberculate (Mammalia) from the lower Eocene of Wutu Basin, Shandong. Vertebrata PalAsiatica, 32:275284. (In Chinese, English summary) Google Scholar
Tyrrell, J. B. 1887. Report on a part of northern Alberta, and portions of adjacent districts of Assiniboia and Saskatchewan. Geological Survey of Canada, 1886 Summary Report, Pt. E.Google Scholar
Vianey-Liaud, M. 1986. Les Multituberculés Thaetians de France, et leurs repports avec les Multituberculés Nord-Americains. Palaeontographica (A), 191:85171.Google Scholar
Wall, C. E., and Krause, D. W. 1992. A biomechanical analysis of the masticatory apparatus of Ptilodus (Multituberculata). Journal of Vertebrate Paleontology, 12:172187.Google Scholar
Webb, M. W. 1996. Late Paleocene mammals from near Drayton Valley, Alberta. Unpublished , , 258 p.Google Scholar
Weil, A. 1998. A new species of Microcosmodon (Mammalia: Multituberculata) from the Paleocene Tullock Formation of Montana, and an argument for the Microcosmodontinae. PaleoBios, 18:115.Google Scholar
Weil, A. 1999. Multituberculate phylogeny and mammalian biogeography in the Late Cretaceous and earliest Paleocene Western Interior of North America. Unpublished Ph.D. dissertation, University of California, Berkeley, 243 p.Google Scholar
Wible, J. R., and Rougier, G. W. 2000. Cranial anatomy of Krypto-baatar dashzevegi (Mammalia, Multituberculata), and its bearing on the evolution of mammalian characters. Bulletin of the American Museum of Natural History, 247:1124.Google Scholar
Wilson, M. V. H. 1988. Taphonomic processes: Information loss and information gain. Geoscience Canada, 15:131148.Google Scholar
Wolfe, J. A. 1978. A paleobotanical interpretation of Tertiary climates in the northern hemisphere. American Scientist, 66:694703.Google Scholar
Youzwyshyn, G. P. 1988. Paleocene mammals from near Cochrane, Alberta. Unpublished , , 484 p.Google Scholar