Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-27T15:40:57.078Z Has data issue: false hasContentIssue false

New Devonian microconchids (Tentaculita) from the Holy Cross Mountains, Poland

Published online by Cambridge University Press:  14 July 2015

Michał Zatoń
Affiliation:
University of Silesia, Faculty of Earth Sciences, Bedzińska Street 60, PL-41-200 Sosnowiec, Poland, ;
Wojciech Krawczyński
Affiliation:
University of Silesia, Faculty of Earth Sciences, Bedzińska Street 60, PL-41-200 Sosnowiec, Poland, ;

Abstract

Tentaculitoid microconchid tubeworms from Devonian (uppermost Emsian-upper Givetian) deposits of the Holy Cross Mountains, Poland, include three new species from stratigraphically well-constrained lithological units: Polonoconchus skalensis n. gen. n. sp., Palaeoconchus sanctacrucensis n. sp. and Microconchus vinni n. sp. The microconchids inhabited fully marine environments during transgressive pulses, as is evidenced from facies and associated fossils. Polonoconchus skalensis n. gen. n. sp. and Palaeoconchus sanctacrucensis n. sp. inhabited secondary firm- to hard-substrates in deeper-water, soft-bottom environments. They developed planispiral, completely substrate-cemented tubes and planispiral tubes with elevated apertures, which is indicative of environments where sedimentation rate is low but competition for space (by overgrowth) may be high. Microconchus vinni n. sp., on the other hand, developed a helically coiled distal portion of the tube as a response to a high sedimentation rate. As the taxonomic composition of Devonian microconchids is poorly recognized at both regional and global scales, this new material contributes significantly to our understanding of the diversity of these extinct tube-dwelling encrusters.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barringer, J. E. 2008. Analysis of the occurrence of microconchids on Middle Devonian brachiopods from the Michigan Basin: Implications for microconchid and brachiopod autecology. Unpublished , Michigan State University, 118 p.Google Scholar
Beus, S. S. 1980. Devonian serpulid bioherms in Arizona. Journal of Paleontology, 54:11251128.Google Scholar
Bouček, B. 1964. The Tentaculites of Bohemia. Publication of Czechoslovakian Academy of Sciences, Prague, 125 p.Google Scholar
Brown, T. 1861. Notes on the Mountain Limestone and Lower Carboniferous rocks of the Fifeshire coast from Burntisland to St. Andrews. Transactions of the Royal Society of Edinburgh, 22:385404.CrossRefGoogle Scholar
Burchette, T. P. and Riding, R. 1977. Attached vermiform gastropods in Carboniferous marginal marine stromatolites and biostromes. Lethaia, 10:1728.CrossRefGoogle Scholar
Clarke, J. M. 1908. The beginnings of dependent life. New York State Museum Bulletin, 121:146196.Google Scholar
Daudin, F. M. 1800. Recueil de mémoires et de notes sur les espèces inédites ou peu connues de Mollusques, de vers et de Zoophytes. Fuchs et Treuttel et Wurtz, Paris. 50 p.Google Scholar
Dreesen, R. and Jux, U. 1995. Microconchid buildups from the late Famennian perotidal-lagoonal settings (Evieux Formation, Ourthe Valley, Belgium). Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 198:107121.CrossRefGoogle Scholar
Eichwald, E. 1860. Lethaea Rossica ou Paléontologie de la Russie, décrite et figurée. Premier Volume. Libraire et Imprimerie de E. Schweizerbart, Stuttgart, 681 p.Google Scholar
Etheridge, K. 1880. A contribution to the study of the British Carboniferous tubicolar Annelida. Geological Magazine, 7:258266.Google Scholar
Fraiser, M. L. In press. Paleoecology of secondary tierers from Western Pangean tropical marine environments during the aftermath of the end-Permian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology.Google Scholar
Głuchowski, E. 1993. Crinoid assemblages in the Polish Givetian and Frasnian. Acta Palaeontologica Polonica, 38:3592.Google Scholar
Głuchowski, E. 2005. Epibionts on upper Eifelian crinoid columnals from the Holy Cross Mountains, Poland. Acta Palaeontologica Polonica, 50:315328.Google Scholar
Goldfuss, A. 1831. Petrefacta Germaniae tarn ea Quae in Museo Universitatis Regiae Borussicae Fridericiae Wilhemiae Rhennae servantur Quam alia Quaecunque in Museis Hoeninghusiano Muensteriano Aliisque extant, Iconibus et descriptionibus illustrata. Erster Theil, Lieferung 3. Arnz and Comp., Düsseldorf, p. 165240.Google Scholar
Gürich, G. 1896. Das Paläozoikum im Polnischen Mittelgebirge. Verhandlungen der Russischen Kaiserlichen Mineralogischen Gesellschaft zu St. Petersburg, 32:1539.Google Scholar
Hall, J. 1859. Paleontology of New York. Vol. III. Containing descriptions and figures of the organic remains of lower Halderberg Group and the Oriskany Sandstone. Printed by C. van Benthuysen, Albany, 532 p.Google Scholar
Hall, J. 1862. Contributions to Paleontology; comprising descriptions of new species of fossils, from the upper Helderberg, Hamilton, and Chemung groups. 15 Annual Report of the Regents of the University of the State of New York on the Condition of the State Cabinet of Natural History, p. 29193.Google Scholar
Howell, B. F. 1962. Worms, p. W144W177. In Moore, R. C. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology. Pt. W. Miscellanea. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Howell, B. F. 1964. A new serpulid worm, Spirorbis kentuckiensis, from the Chester group of Kentucky. Journal of Paleontology, 38:170171.Google Scholar
Ippolitov, A. P. 2010. Serpulid (Annelida, Polychaeta) evolution and ecological diversification patterns during Middle-Late Jurassic. Earth Science Frontiers, 17:207208.Google Scholar
Jäger, M. 1983. Serpulidae (Polychaeta Sedentaria) aus dem norddeutsche hoheren Oberkreide-Systematik, Stratigraphie, Okologie. Geologische Jahrbuch, Reihe A, 68:1219.Google Scholar
Jäger, M. 2004. Serpulidae und Spirorbidae (Polychaeta Sedentaria) aus Campan und Maastricht von Norddeutschland, den Niederlanden, Belgien und angrenzenden Gebieten. Geologische Jahrbuch, Reihe A, 157:121249.Google Scholar
Johnson, J. G., Klaper, G., and Sandberg, C. A. 1985. Devonian eustatic fluctuations in Euroamerica. Bulletin of the Geological Society of America, 96:567587.Google Scholar
Karczewski, L. 1989. Ślimaki i małże dewońskie z Gór Świętokrzyskich. Biuletyn Państwowego Instytutu Geologicznego, 363:97113.Google Scholar
Kiepura, M. 1973. Devonian bryozoans of the Holy Cross Mountains, Poland. Part II. Cyclostomata and Cystoporata. Acta Palaeontologica Polonica, 18:323395.Google Scholar
Knight-Jones, E. W. 1951. Gregariousness and some other aspects of the setting behaviour of Spirorbis . Journal of the Marine Biological Association of the United Kingdom, 30:201222.Google Scholar
Kuklinski, P. 2009. Ecology of stone-encrusting organisms in the Greenland Sea—a review. Polar Research, 28:222237.CrossRefGoogle Scholar
Leeder, R. M. 1973. Lower Carboniferous serpulid patch reefs, bioherms and biostromes. Nature, 242:4142.CrossRefGoogle Scholar
Linnaeus, C. 1758. Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Tomus I. Editio decima, reformata. Holmiae, L. Salvius, Stockholm, 824 p.Google Scholar
Malec, J. and Turnau, E. 1997. Middle Devonian conodont, ostracod and miospore stratigraphy of the Grzegorzowice–Skały section, Holy Cross Mountains, Poland. Bulletin of the Polish Academy of Sciences, Earth Sciences, 45:6786.Google Scholar
Martin, W. 1809. Petrificata Derbiensia; or, figures and descriptions of petrifactions collected in Derbyshire. Vol. 1. Printed by Lyon, D., Wigan, 248 p.Google Scholar
Matyja, H. 2009. Depositional history of the Devonian succession in the Pomeranian Basin, NW Poland. Geological Quarterly, 53:6392.Google Scholar
M'Coy, F. 1844. A synopsis of the characters of the Carboniferous Limestone fossils of Ireland. Printed at the University Press by M. H. Gill, Dublin, 207 p.Google Scholar
Murchison, R. I. 1839. The Silurian System, founded on geological researches in the counties of Salop, Hereford, Radnor, Montgomery, Caermarthen, Brecon, Pembroke, Monmouth, Gloucester, Worcester, and Stafford; with descriptions of the coal-fields and overlying formations. John Murray, London, 768 p.Google Scholar
Narkiewicz, M. 1991. Procesy dolomityzacji mezogenetycznej na przykładzie żywetu i franu Gór Świętokrzyskich. Prace Państwowego Instytutu Geologicznego, 132:554.Google Scholar
Narkiewicz, M., Racki, G., and Wrzołek, T. 1990. Litostratygrafia dewońskiej serii stromatoporoidowo-koralowcowej w Górach Świętokrzyskich. Kwartalnik Geologiczny, 34:433456.Google Scholar
Nicholson, H. A. 1874. Descriptions of new fossils from the Devonian formation of Canada. Geological Magazine, 1:197201.CrossRefGoogle Scholar
Nicholson, H. A. 1876. The ancient life-history of the Earth: a comprehensive outline of the principles and leading facts of paleontological science. Akron, Werner, 428 p.Google Scholar
Pajchlowa, M. 1957. Dewon w profilu Grzegorzowice-Skaly. Biuletyn Instytutu Geologicznego, 122:145253.Google Scholar
Peryt, T. M. 1974. Spirorbid-algal stromatolites. Nature, 249:239240.CrossRefGoogle Scholar
Racki, G. 1986. Middle to Upper Devonian boundary beds of the Holy Cross Mts.: Brachiopod responses to eustatic events, p. 203212. In Walliser, O. H. (ed.), Global Bio-Events. Lecture Notes in Earth Sciences, 8.Google Scholar
Racki, G. 1988. Middle to Upper Devonian boundary beds of the Holy Cross Mts., Central Poland: Introduction to ecostratigraphy, p. 119131. In McMillan, N. J., Embry, A. F. and Glass, D. J. (eds.), Devonian of the World. Canadian Society of Petroleum Geologists, Memoir 14.Google Scholar
Racki, G. 1993a. Evolution of the bank to reef complex in the Devonian of the Holy Cross Mountains. Acta Palaeontologica Polonica, 37:87182.Google Scholar
Racki, G. 1993b. Brachiopod assemblages in the Devonian Kowala Formation of the Holy Cross Mountains. Acta Palaeontologica Polonica, 37:297357.Google Scholar
Racki, G. and Racka, M. 1981. Ecology of the Devonian Charophyte algae from the Holy Cross Mts. Acta Geologica Polonica, 31:213222.Google Scholar
Racki, G. and Turnau, E. 2000. Devonian series and stage boundaries in Poland. Courier Forschungs-Institut Senckenberg, 225:145158.Google Scholar
Racki, G. and Zapaśnik, T. 1979. Uwagi o tektonice utworów dewońskich synkliny gałęzickiej. Przegląd Geologiczny, 27:154158.Google Scholar
Rakociński, M. 2011. Sclerobionts on upper Famennian cephalopods from the Holy Cross Mountains, Poland. Palaeobiodiversity and Palaeoenvironments, 91:6373.Google Scholar
Rakowicz, Ł. 2010. Strategie życiowe organizmów epizoicznych na przykładzie fauny z Grzegorzowic (ems górny, Góry Świętokrzyskie). p. 6768. In Zatoń, M., Krawczyński, W., Salamon, M. and Bodzioch, A. (eds.), Kopalne biocenozy w czasie i przestrzeni. 21 Konferencja Sekcji Paleontologicznej Polskiego Towarzystwa Geologicznego, Żarki-Letnisko, 13-16 września 2010.Google Scholar
Rovereto, G. 1903. Anellidi del terziario. Rivista Italiana di Paleontologia e Stratigrafia, 9:103104.Google Scholar
Rózkowska, M. 1954. Badania wstępne nad Tetracoralla z eiflu Grzegorzowic. Acta Geologica Polonica, 4:207248.Google Scholar
Salter, J. W. 1863. On the upper Old Red Sandstone and Upper Devonian Rocks. Quarterly Journal of the Geological Society, 19:474496.Google Scholar
Skompski, S. and Szulczewski, M. 1994. Tide-dominated Middle Devonian sequence from the northern part of the Holy Cross Mountains (Central Poland). Facies, 30:247266.CrossRefGoogle Scholar
Sobstel, M. 2003. Sedimentary record of eustatic changes on the Givetian (Devonian) carbonate platform of Małopolska Massif, southern Poland. Acta Geologica Polonica, 53:189200.Google Scholar
Stasińska, A. 1954. Koralowce Tabulata z dewonu Grzegorzowic (Badania wstępne). Acta Geologica Polonica, 4:277290.Google Scholar
Stasińska, A. 1958. Tabulata, Heliolitida et Chaetetida du Devonien moyen des Monts de Sainte-Croix. Acta Palaeontologica Polonica, 3:161282.Google Scholar
Studencka, J. 1983. Chimaerothyris dombrowiensis (Gürich) z dolnego eiflu Gór Świętokrzyskich. Kwartalnik Geologiczny, 27:471490.Google Scholar
Szulczewski, M. 1977. Główne regiony facjalne paleozoiku Gór Świętokrzyskich. Przegląd Geologiczny, 25:428432.Google Scholar
Szulczewski, M. 1995. Depositional evolution of the Holy Cross Mountains in the Devonian and Carboniferous—a review. Geological Quarterly, 39:471488.Google Scholar
Taylor, P. D. and Vinn, O. 2006. Convergent morphology in small spiral worm tubes (‘Spirorbis’) and its palaeoenvironmental implications. Journal of the Geological Society, London, 163:225228.Google Scholar
Taylor, P.D., Vinn, O., and Wilson, M.A. 2010. Evolution of biomineralisation in ‘lophophorates’. Special Papers in Palaeontology, 84:317333.Google Scholar
Toomey, D. F. and Cys, J. M. 1977. Spirorbid/algal stromatolites, a probable marginal marine occurrence from the lower Permian of New Mexico, U.S.A. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 1977/6:331342.Google Scholar
Vinn, O. 2006. Two new microconchid (Tentaculita Bouček 1964) genera from the early Palaeozoic of Baltoscandia and England. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 2006/2:89100.CrossRefGoogle Scholar
Vinn, O. 2010a. Adaptive strategies in the evolution of encrusting tentaculitoid tubeworms. Palaeogeography, Palaeoclimatology, Palaeoecology, 292:211221.CrossRefGoogle Scholar
Vinn, O. 2010b. Shell structure of helically coiled microconchids from the Middle Triassic (Anisian) of Germany. Paläontologische Zeitschrift, 84:495499.Google Scholar
Vinn, O. and Mutvei, H. 2009. Calcareous tubeworms of the Phanerozoic. Estonian Journal of Earth Sciences, 58:286296.Google Scholar
Vinn, O. and Taylor, P. D. 2007. Microconchid tubeworms from the Jurassic of England and France. Acta Palaeontologica Polonica, 52:391399.Google Scholar
Vinn, O. and Wilson, M. A. 2010. Microconchid-dominated hardground association from the late Pridoli (Silurian) of Saaremaa, Estonia. Palaeontologia Electronica, 13.2.9A:112.Google Scholar
Weedon, M. J. 1990. Shell structure and affinity of vermiform ‘gastropods’. Lethaia, 23:297309.CrossRefGoogle Scholar
Weedon, M. J. 1991. Microstructure and affinity of the enigmatic Devonian tubular fossils Trypanopora . Lethaia, 24:223227.Google Scholar
Weedon, M. J. 1994. Tube microstructure of Recent and Jurassic serpulid polychaetes and the question of the Palaeozoic “spirorbids.” Acta Palaeontologica Polonica, 39:115.Google Scholar
Wilson, M. A. 1985. Disturbance and ecologic succession in an Upper Ordovician cobble-dwelling hardground fauna. Science, 228:575577.CrossRefGoogle Scholar
Wilson, M. A., Vinn, O., and Yancey, T. E. In press. A new microconchid tubeworm from the lower Permian (Artinskian) of central Texas, U.S.A. Acta Palaeontologica Polonica.Google Scholar
Zatoń, M. and Taylor, P. D. 2009. Microconchids (Tentaculita) from the Middle Jurassic of Poland. Bulletin of Geosciences, 84:653660.Google Scholar
Zatoń, M. and Mazurek, D. 2011. Microconchids-a little known group of fossil organisms and their occurrence in the Upper Carboniferous of the upper Silesia. Przegląd Geologiczny, 59:157162. (In Polish).Google Scholar
Zatoń, M. and Vinn, O. 2011. Microconchids and the rise of modern encrusting communities. Lethaia, 44:57.CrossRefGoogle Scholar