Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-24T09:58:36.069Z Has data issue: false hasContentIssue false

Jurassic–Cretaceous boundary ammonite Blanfordiceras (Mollusca: Cephalopoda) from Fortissimo-1 Wildcat Well, Browse Basin, Northwest Shelf, Australia

Published online by Cambridge University Press:  14 July 2015

Jeffrey D. Stilwell
Affiliation:
1Applied Palaeontology and Basin Studies Group, School of Geosciences, Bldg 28, Monash University, Clayton VIC 3800; and Australian Museum, 6 College Street, Sydney, New South Wales 2000, Australia,
Matthew Dixon
Affiliation:
2Shell Development (Australia) Proprietary Limited, QV1 Building, 250 St George Terrace, Perth WA 6000 Australia, ,
Benedikt Lehner
Affiliation:
2Shell Development (Australia) Proprietary Limited, QV1 Building, 250 St George Terrace, Perth WA 6000 Australia, ,
Silvia Gamarra
Affiliation:
3Shell International and Production B.V., Kessler Park, 2288GS, Rijswijk, The Netherlands,

Abstract

Jurassic–Cretaceous ammonites are particularly robust fossil tools in global stratigraphy and correlation. The successive evolution and extinction of these cephalopod mollusks was so rapid that many ammonite zones are no more than one million years in duration. A well-preserved ammonite specimen from the Fortissimo-1 core, Browse Basin, NW Australia is assignable to the widespread latest Jurassic dimorphic berriaselline genus, Blanfordiceras Cossmann, recorded previously from the Spiti area, Nepal, Tibet, Madagascar, Papua-New Guinea, Antarctica, and southern South America. This is the first report of ammonites of this age in the Australian region. The evolute shell of an estimated 90-100 mm diameter (when extrapolated) and pronounced ornamentation of variably bifurcating, curvilinear and flexuous ribs, intercalated with simple, non-bifurcating ribs, is consistent with Blanfordiceras wallichi (Gray, 1832), which has traditionally been restricted to the uppermost Tithonian Stage, ca. 146.5-145.5 Ma, but may well have survived into the earliest part of the Berriasian. The first recorded occurrence of this ammonite in Australia fills an anomalous absence in the paleobiogeographic distribution of Jurassic–Cretaceous boundary ammonites in the Indo-SW Pacific Subrealm with important implications for the calibration of offshore rocks and wells in Australia.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cossmann, E. 1907. Rectifications de Nomenclature. Revue Critique de Paléozoologie Organse Trimestrie, 10:64.Google Scholar
Crick, G. C. 1904. IV. Notes on the Cephalopoda belonging to the Strachey collection from the Himalaya. Part 1: Jurassic. The Geological Magazine, new series, Decade V, 1:115124.Google Scholar
Cuvier, G. 1797. Tableau Élémentaire de l'Histoire Naturelle des Animaux. Paris, 710 p.CrossRefGoogle Scholar
Enay, R. and Cariou, E. 1999. Jurassic ammonite faunas from Nepal and their bearing on the palaeobiogeography of the Himalayan belt. Journal of Asian Earth Sciences, 17:829848.Google Scholar
Gradstein, F. M., Ogg, J. G., and Smith, A. G. 2004. A Geologic Time Scale 2004. Cambridge University Press, 589 p.CrossRefGoogle Scholar
Gray, J. E. 1830-1832. Illustrations of Indian Zoology, vol. 1, Pl. C, fig. 3.Google Scholar
Helby, R., Morgan, R., and Partridge, A. D. 2004. Updated Jurassic–Early Cretaceous dinocyst zonation, NWS Australia. Australian Government Geoscience Australia publication ISBN 1 929871 01 2. (Chronostratigraphic chart only).Google Scholar
Hikuroa, D. 2004. The Fauna and Biostratigraphy of the Jurassic Latady Formation, Antarctic Peninsula. Unpublished , University of Auckland, New Zealand.Google Scholar
Hu, X., Jansa, L., and Wang, C. 2008. Upper Jurassic–Lower Cretaceous stratigraphy in south-eastern Tibet: a comparison with western Himalayas. Cretaceous Research, 29:301315.CrossRefGoogle Scholar
Hyatt, A. 1889. Genesis of the Arietitidae. Smithsonian Contributions to Knowledge, 26:673, 250 p.Google Scholar
Linnaeus, C. Von (Linné, C.). 1758. Systema Naturae. Edition 10. Laurentii Salvii, Holmiae, 823 p.Google Scholar
Ogg, J. G., Ogg, G., and Gradstein, F. M. 2008. The Concise Geological Time Scale. Cambridge University Press, 184 p.Google Scholar
Salfeld, H. 1921. Kiel- und Furchenbildung auf der Schalenaussenseite der Ammonoideen in ihrer Bedeutung für die Systematik und Festlegung von Biozonen, Zentralblatt für Mineralogie. Geologie und Palaeontologie, 1921:343347.Google Scholar
Schindewolf, O. H. 1966. Studien zur Strammesgeschichte der Ammonites. Lieferung 5. Abhandlungen der Mathematisch-Naturwissenschaftlichen Klasse, Akademie der Wissenchaften und der Literatur in Mainz, 3, 1966:325454.Google Scholar
Spath, L. F. 1934. The Jurassic and Cretaceous ammonites and belemnites of the Attock District. The Geological Survey of India, Palaeontologia Indica, being the figures and descriptions of the organic remains procured during the progress of the Geological Survey of India, new series, 20:139, 6 pls.Google Scholar
Stevens, G. R. 1997. The Late Jurassic ammonite fauna of New Zealand. Institute of Geological and Nuclear Sciences Monograph 18, 217 p.Google Scholar
Thompson, M. R. A. 1983. Late Jurassic ammonites from the Orville Coast, Antarctica, p. 315319. In Oliver, R. L., James, P., and Jago, J. B. (eds), Antarctic Earth Science, Australian Academy of Sciences, Canberra, 697 p.Google Scholar
Yin, J. and Enay, R. 2004. Tithonian ammonoid biostratigraphy in eastern Himalayan Tibet. Geobios, 37:667686.Google Scholar
Zittel, K. A. Von. 1876-1893. Handbuch der Paläontologie. vols. i–iv. Cephalopoda, p. 329522, 1(2)3 (1884), R. Oldenburg, München und Leipzig, 893 p.Google Scholar