Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-13T05:16:16.516Z Has data issue: false hasContentIssue false

Intravital damage to the body of Dickinsonia (Metazoa of the late Ediacaran)

Published online by Cambridge University Press:  02 September 2020

Andrey Ivantsov
Affiliation:
Borissiak Paleontological Institute, Russian Academy of Sciences, Moscow117997, Russia , ,
Maria Zakrevskaya
Affiliation:
Borissiak Paleontological Institute, Russian Academy of Sciences, Moscow117997, Russia , ,
Aleksey Nagovitsyn
Affiliation:
Arkhangelsk Regional Lore Museum, Arkhangelsk163000, Russia
Anna Krasnova
Affiliation:
Borissiak Paleontological Institute, Russian Academy of Sciences, Moscow117997, Russia , , Faculty of Geology, Lomonosov Moscow State University, Moscow119991, Russia
Ilya Bobrovskiy
Affiliation:
Research School of Earth Sciences, Australian National University, Canberra, Australian Capital Territory 2601, Australia
Ekaterina Luzhnaya (Serezhnikova)
Affiliation:
Borissiak Paleontological Institute, Russian Academy of Sciences, Moscow117997, Russia , ,

Abstract

Several specimens of Dickinsonia cf. D. menneri, originating from a single burial event at the Lyamtsa locality of the late Ediacaran (Vendian) in the southeastern White Sea area, Russia, represent deviations from normal morphology: a reduction in the total length of the body; the loss of portions of the body; various deformations of the transverse elements, called isomers; and splitting of the longitudinal axis with the formation of two posterior ends. It is assumed that these deformations were formed as a result of non-lethal damage, which occurred long before the burial event, and the response of Dickinsonia to them. The progress of the regeneration process at the damaged areas, and especially its deviations, indicates that the growth zone was located at the posterior end of the Dickinsonia body. The cause of non-lethal damage to Dickinsonia could not be established, but the local distribution of deformed specimens preserved in the same burial event alongside cyanobacterial colonies, and the presence of weak deformations, expressed only in shortening of the length of some isomers, lead to the conclusion that damage resulted from short episodes of physicochemical impact, rather than occasional attacks by a hypothetical macrophage.

Type
Articles
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press on behalf of The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Babcock, L.E., 1993, Trilobite malformations and the fossil record of behavioral asymmetry: Journal of Paleontology, v. 67, p. 217229.CrossRefGoogle Scholar
Bicknell, R.D.C., and Pates, S. 2020, Exploring abnormal Cambrian-aged trilobites in the Smithsonian collection: PeerJ, 8, e8453, p. 120.CrossRefGoogle ScholarPubMed
Billings, E., 1872, Fossils in Huronian rocks: Canadian Naturalist and Quarterly Journal of Science, v. 6, p. 478.Google Scholar
Bobrovskiy, I., Hope, J.M., Ivantsov, A., Nettersheim, B.J., Hallman, C., and Brocks, J.J., 2018a, Ancient steroids establish the Ediacaran fossil Dickinsonia as one of the earliest animals: Science, v. 361, p. 12461249.CrossRefGoogle Scholar
Bobrovskiy, I., Hope, J.M., Krasnova, A., Ivantsov, A., and Brocks, J.J., 2018b, Molecular fossils from organically preserved Ediacara Biota reveal cyanobacterial origin for Beltanelliformis: Nature Ecology & Evolution, v. 2, p. 437440.CrossRefGoogle Scholar
Bobrovskiy, I., Krasnova, A., Ivantsov, A., Luzhnaya (Serezhnikova), E., and Brocks, J.J., 2019, Simple sediment rheology explains the Ediacara biota preservation: Nature Ecology & Evolution, v. 3, p. 582589. https://doi.org/10.1038/s41559-019-0820-7.CrossRefGoogle ScholarPubMed
Brasier, M., and Antcliffe, J.B., 2008, Dickinsonia from Ediacara: a new look at morphology and body construction: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 270, p. 311323.CrossRefGoogle Scholar
Morris S., Conway, 1989, Early metazoans: Science Progress, v. 73, p. 8199.Google Scholar
Darroch, S.A.F., Laflamme, M., and Clapham, M.E., 2013, Population structure of the oldest known macroscopic communities from Mistaken Point, Newfoundland: Paleobiology, v. 39, p. 591608.CrossRefGoogle Scholar
Droser, M.L., Gehling, J.G., and Jensen, S.R., 2006, Assemblage palaeoecology of the Ediacara biota: the unabridged edition: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 232, p. 131147.Google Scholar
Dunn, F.S., Liu, A.G., and Donoghue, P.C.J., 2018, Ediacaran developmental biology: Biological Reviews, v. 93, p. 914932.CrossRefGoogle ScholarPubMed
Dzik, J., 2003, Anatomical information content in the Ediacaran fossils and their possible zoological affinities: Integrative and Comparative Biology, v. 43, p. 114126.CrossRefGoogle ScholarPubMed
Evans, S.D., Droser, M.L., and Gehling, J.G., 2015, Dickinsonia liftoff: Evidence of current derived morphologies: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 434, p. 2833.CrossRefGoogle Scholar
Evans, S.D., Droser, M.L., and Gehling, J.G., 2017, Highly regulated growth and development of the Ediacara macrofossil Dickinsonia costata: Plos One, v. 12, no. 5, e0176874. https://doi.org/10.1371/journal.pone.0176874.CrossRefGoogle ScholarPubMed
Evans, S.D., Gehling, J.G., and Droser, M.L, 2019a, Slime travelers: early evidence of animal mobility and feeding in an organic mat world: Geobiology, p. 490509.CrossRefGoogle Scholar
Evans, S.D., Huang, W., Gehling, J.G., Kisailus, D, and Droser, M.L., 2019b, Stretched, mangled, and torn: responses of the Ediacaran fossil Dickinsonia to variable forces: Geology, v. 47, p. 10491053.Google Scholar
Evans, S.D., Hughes, I.V., Gehling, J.G., and Droser, M.L., 2020, Discovery of the oldest bilaterian from the Ediacaran of South Australia: Proceedings of the National Academy of Sciences, v. 117, p. 78457850.CrossRefGoogle ScholarPubMed
Fedonkin, M.A., 1990, Systematic description of the Vendian Metazoa, in Sokolov, B., and Iwanowski, A., eds., The Vendian System 1, Paleontology: Berlin, Heidelberg, Springer-Verlag, p. 71120.Google Scholar
Fedonkin, M.A., Ivantsov, A.Yu., Leonov, M.V., and Serezhnikova, E.A., 2007, Dynamics of evolution and biodiversity in Late Vendian: a view from the White Sea, in Semikhatov, M.A., ed., The Rise and Fall of the Vendian (Ediacaran) Biota. Origin of the Modern Biosphere: Transaction of the International Conference of the IGCP Project 493, Moscow, GEOS, p. 6–9.Google Scholar
Fraley, C., and Raftery, A., 2007, Bayesian regularization for normal mixture estimation and model-based clustering: Journal of Classification, v. 24, p. 155188.CrossRefGoogle Scholar
Gehling, J.G., 1991, The case for Ediacaran fossil roots to the metazoan tree: Memoir of the Geological Society of India, v. 20, p. 181224.Google Scholar
Gehling, J.G., and Droser, M.L., 2018, Ediacaran scavenging as a prelude to predation: Emerging Topics in Life Sciences, v. 2, p. 213222. https://doi.org/10.1042/ETLS20170166.Google ScholarPubMed
Gehling, J.G., Narbonne, G.M., and Anderson, M.M., 2000, The first named Ediacaran body fossil, Aspidella terranovica: Palaeontology, v. 43, p. 427456.CrossRefGoogle Scholar
Gehling, J.G., Droser, M.L., Jensen, S.R., and Runnegar, B.N., 2005, Ediacara organisms: relating form to function, in Briggs, D., ed., Evolving Form and Function: Fossils and Development: New Haven, Yale University Press, p. 4366.Google Scholar
Gehling, J.G., Runnegar, B.N., and Droser, M.L., 2014, Scratch traces of large Ediacara bilaterian animals: Journal of Paleontology, v. 88, p. 284298.CrossRefGoogle Scholar
Glaessner, M.F., 1958, New fossils from the base of the Cambrian in South Australia: Transactions of the Royal Society of South Australia, v. 81, p. 185188.Google Scholar
Glaessner, M.F., and Wade, M., 1966, The Late Precambrian fossils from Ediacara, South Australia: Palaeontology, v. 9, p. 599628.Google Scholar
Gold, D.A., Runnegar, B., Gehling, J.G., and Jacobs, D.K., 2015, Ancestral state reconstruction of ontogeny supports a bilaterian affinity for Dickinsonia: Evolution & Development, v. 17, p. 315324.CrossRefGoogle ScholarPubMed
Grazhdankin, D.V., 2003, Structure and depositional environment of the Vendian Complex in the Southeastern White Sea area: Stratigraphy and Geological Correlation, v. 11, p. 313331.Google Scholar
Grazhdankin, D.V., 2004, Patterns of distribution in the Ediacaran biotas: facies versus biogeography and evolution: Paleobiology, v. 30, p. 203221.Google Scholar
Harrington, H.J., and Moore, R.C., 1956, Medusa of the Hydroidea, in Moore, R.C., ed., Treatise on Invertebrate Paleontology, Part F: Coelenterata: Boulder, Colorado and Lawrence, Kansas, Geological Society of America and University of Kansas Press, p. F77F80.Google Scholar
Hoekzema, R.S., Brasier, M.D., Dunn, F.S., and Liu, A.G., 2017, Quantitative study of developmental biology confirms Dickinsonia as a metazoan: Proceedings of the Royal Society B: Biological Sciences, v. 284, 20171348. https://doi.org/10.1098/rspb.2017.1348.Google ScholarPubMed
Ivantsov, A.Yu., 2003, Ordovician Trilobites of the Subfamily Asaphinae of the Ladoga Glint: Paleontological Journal, v. 37, p. 229336.Google Scholar
Ivantsov, A.Yu., 2007, Small Vendian transversely segmented fossils: Paleontological Journal, v. 41, p. 113122.CrossRefGoogle Scholar
Ivantsov, A.Yu., 2008, Proarticulata—a phylum of Metazoan animals that became extinct in the Precambrian: Evolyutsionnaya morfologiya zhivotnykh. K stoletiyu so dnya rozhdeniya akad. A.V. Ivanova. Ch. I. Tr. SPb. obva estestvoispytatelei. Ser. 1. T. 97 (Evolutionary Morphology of Animals. A Contribution to the 100th Anniversary of the Birth of Academician A.V. Ivanov. Part I: Proceedings of the St. Petersburg Society of Naturalists, ser. 1, v. 97): St. Petersburg, St Petersburg University, p. 32–42. [in Russian]Google Scholar
Ivantsov, A.Yu., 2011, Feeding traces of Proarticulata—the Vendian Metazoa: Paleontological Journal, v. 45, p. 237248.CrossRefGoogle Scholar
Ivantsov, A. Yu., 2012, Paleontological data on the possibility of Precambrian existence of mollusks, in Fyodorov, A., and Yakovlev, H., eds., Mollusks: Morphology, Behavior and Ecology. New York, Nova Science Publishers, p. 153179.Google Scholar
Ivantsov, A.Yu., 2013, Trace fossils of Precambrian metazoans “Vendobionta” and “Mollusks:” Stratigraphy and Geological Correlation, v. 21, p. 252264.CrossRefGoogle Scholar
Ivantsov, A.Yu., and Malakhovskaya, Ya.E., 2002, Giant traces of Vendian animals: Doklady Earth Sciences, v. 385A, p. 618622.Google Scholar
Ivantsov, A.Yu., and Zakrevskaya, M.A., 2018, The phenomenon of exclusive preservation of Late Precambrian macrofossils, in Trudy Paleontologicheskogo obshchestva, Tom I (Proceedings of the Paleontological Society, v. 1), Moscow: Paleontological Institute of Russian Academy of Sciences, v. 2018, p. 4653. [in Russian]Google Scholar
Ivantsov, A.Yu., Gritsenko, V.P., Konstantinenko, L.I., and Zakrevskaya, M.A., 2014, Revision of the problematic Vendian macrofossil Beltanelliformis (=Beltanelloides, Nemiana): Paleontological Journal, v. 48, p. 14151440.CrossRefGoogle Scholar
Ivantsov, A.Yu., Nagovitsyn, A.L., and Zakrevskaya, M.A., 2019a, Traces of locomotion of Ediacaran macroorganisms: Geosciences, v. 9, 10.3390/geosciences9090395.CrossRefGoogle Scholar
Ivantsov, A.Yu., Zakrevskaya, M.A., and Nagovitsyn, A.L., 2019b, Morphology of integuments of the Precambrian animals, Proarticulata: Invertebrate Zoology, v. 16, p. 1926.CrossRefGoogle Scholar
Ivantsov, A.Yu., Fedonkin, M.A., Nagovitsyn, A.L., and Zakrevskaya, M.A., 2019c, Cephalonega, a new generic name and the system of Vendian Proarticulata: Palaeontological Journal, v. 53, p. 11341146.CrossRefGoogle Scholar
Jenkins, R.J.F., 1992, Functional and ecological aspects of Ediacaran assemblages, in Lipps, J., and Signor, P., eds., Origin and Early Evolution of the Metazoa: New York, Plenum Press, p. 131176.CrossRefGoogle Scholar
Keller, B.M., and Fedonkin, M.A., 1976, New organic fossil finds in the Precambrian Valday Series along the Syuzma River: Izvestiya Akademii Nauk SSSR, Seriya Geologicheskaya, no. 3., p. 3844. [in Russian]Google Scholar
Keller, B.M., Menner, V.V., Stepanov, V.A., and Chumakov, N.M., 1974, New finds of Metazoa in the Vendomii of the Russian Platform: Izvestiya Akademii Nauk SSSR, Seriya Geologicheskaya, v. 12, p. 130134. [in Russian]Google Scholar
Kenchington, C.G., Dunn, F.S., and Wilby, P.R., 2018, Modularity and overcompensatory growth in Ediacaran rangeomorphs demonstrate early adaptations for coping with environmental pressures: Current Biology, v. 28, p. 33303336.CrossRefGoogle ScholarPubMed
Laflamme, M., and Narbonne, G.M., 2008, Ediacaran fronds: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 258, p. 162179.CrossRefGoogle Scholar
Laflamme, M., Narbonne, G.M., and Anderson, M.M., 2004, Morphometric analysis of the Ediacaran frond Charniodiscus from the Mistaken Point Formation, Newfoundland: Journal of Paleontology, v. 78, p. 827837.2.0.CO;2>CrossRefGoogle Scholar
Laflamme, M., Xiao, S.H., and Kowaleski, M., 2009, Osmotrophy in modular Ediacara organisms: Proceedings of the NAS of the USA, v. 106, p. 1443814443.CrossRefGoogle ScholarPubMed
McMenamin, M.A.S., 1998, The garden of Ediacara: Discovering the First Complex Life: New York, Columbia University Press, 295 p.Google Scholar
Narbonne, G.M., 2005, The Ediacara biota: Neoproterozoic origin of animals and their ecosystems: Annual Review of Earth and Planetary Science, v. 33, p. 421442.CrossRefGoogle Scholar
Narbonne, G.M., Xiao, S., and Shields, G., 2012, Ediacaran period. Chapter 18, in Gradstein, F., Ogg, J., and Ogg, G., eds., The Geologic Time Scale: Amsterdam, Elsevier, p. 427449.Google Scholar
Rozhnov, S.V., 2009, Development of the trophic structure of Vendian and Early Paleozoic marine communities: Paleontological Journal, v. 43, p. 13641377.CrossRefGoogle Scholar
Runnegar, B., 1982, Oxygen requirements, biology and phylogenetic significance of the Late Precambrian worm Dickinsonia, and the evolution of the burrowing habit: Alcheringa, v. 6, p. 223239.CrossRefGoogle Scholar
Ruppert, E.E., Fox, R.S., and Barnes, R.D., 2004, Invertebrate Zoology: A Functional Evolutionary Approach. 7th edition: Belmont, California, Brooks/Cole Thompson Learning, 963 p.Google Scholar
Seilacher, A., 1989, Vendozoa: organismic construction in the Proterozoic biosphere: Lethaia, v. 22, p. 229239.CrossRefGoogle Scholar
Seilacher, A., 1999, Biomat related lifestyles in the Precambrian: Palaios, v. 14, p. 8693.CrossRefGoogle Scholar
Seilacher, A., Grazhdankin, D., and Legouta, A., 2003, Ediacaran biota: the dawn of animal life in the shadow of giant protists: Paleontological Research, v. 7, p. 4354.CrossRefGoogle Scholar
Sperling, E.A., and Vinther, J., 2010, A placozoan affinity for Dickinsonia and the evolution of late Proterozoic metazoan feeding modes: Evolution and Development, v. 12, p. 201209.CrossRefGoogle ScholarPubMed
Sprigg, R.C., 1947, Early Cambrian (?) jellyfishes from the Flinders Ranges, South Australia: Transactions of the Royal Society of South Australia, v. 71, p. 212224.Google Scholar
Sprigg, R.C., 1949, Early Cambrian ‘jellyfishes' of Ediacara, South Australia, and Mount John, Kimberley District, Western Australia: Transactions of the Royal Society of South Australia, v. 73, p. 7299.Google Scholar
Stankovsky, A.F., Verichev, E.M., and Dobeiko, I.P., 1985, The Vendian of Southeastern White Sea region, in Sokolov, B., and Iwanowski, A. eds., The Vendian System, Stratigraphy and Geological Processes, v. 2: Moscow, Nauka, p. 6776. [in Russian]Google Scholar
Steiner, M., 1996, Chuaria circularis Walcott, 1899—“megasphaeromorph acritarch” or prokaryotic colony?: Acta Universitatis Carolinae Geologica, v. 40, p. 645665.Google Scholar
Termier, H., and Termier, G., 1968, Evolution et Biocinese: Les Invertebrates dans l'Histoire du Monde Vivant: Paris, Masson et Cie, 241 p.Google Scholar
Valentine, J.W., 1992, Dickinsonia as a polypoid organism: Paleobiology, v. 18, p. 378382.CrossRefGoogle Scholar
Wade, M., 1972, Dickinsonia: polychaete worms from the Late Precambrian Ediacara fauna, South Australia: Memoirs of the Queensland Museum, v. 16, p. 171190.Google Scholar
Zakrevskaya, M.A., 2014, Paleoecological reconstruction of the Ediacaran benthic macroscopic communities of the White Sea (Russia): Palaeogeography, Palaeoclimatology, Palaeoecology, v. 410, p. 2738.CrossRefGoogle Scholar
Zakrevskaya, M.A., and Ivantsov, A.Yu., 2017, Dickinsonia costata—the first evidence of neoteny in Ediacaran organisms: Invertebrate Zoology, v. 14, p. 9298.CrossRefGoogle Scholar
Zhang, X., and Reitner, J., 2006, A fresh look at Dickinsonia: removing it from Vendobionta: Acta Geologica Sinica, v. 80, p. 635642.Google Scholar
Zhuravlev, A. Yu., 1993, Were Ediacaran Vendobionta multicellulars?: Neues Jahrbuch für Geologie Paläontologie, Abhandlungen, v. 190, p. 299314.Google Scholar