Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T08:39:02.372Z Has data issue: false hasContentIssue false

Homology of the astragalus and structure and function of the tarsus of Diadectidae

Published online by Cambridge University Press:  20 May 2016

David S Berman
Affiliation:
Section of Vertebrate Paleontology, Carnegie Museum of Natural History, 4400 Forbes Avenue, Pittsburgh, PA 15213-4080, ,
Amy C. Henrici
Affiliation:
Section of Vertebrate Paleontology, Carnegie Museum of Natural History, 4400 Forbes Avenue, Pittsburgh, PA 15213-4080, ,

Abstract

Superbly preserved tarsi of a new, undescribed, primitive member of Diadectidae and of Diadectes, the best known member of the family, are described. The major distinction between them is the retention of sutures in the astragalus of the former which clearly indicate an origin from the fusion of three separate ossifications considered homologues of the primitive amphibian tibiale, intermedium, and proximal centrale. Among the Diadectomorpha (includes also Limnoscelidae and Tseajaiidae) only Diadectidae possesses an astragalus, which is considered a synapomorphy of the family within this grouping. Furthermore, the sister-group relationship of the new, undescribed diadectid to the other diadectids demonstrates a transformational, phylogenetic homology of the astragalus via the ontogenetic fusion of the primitive amphibian tarsal bones. The astragalus of diadectids is identical to those of late Paleozoic terrestrial amniotes in structure and relationship to neighboring elements. This, plus the wide acceptance of a close relationship between Diadectomorpha and Amniota, is cited as suggestive of an identical developmental origin of their astragali.

In diadectids, including fully mature individuals, an unusual reduction or absence of ossification of some central and distal tarsal bones has resulted in an unique tarsus with large unoccupied areas and a structural pattern in which the only bony link between the tarsus and the digits is via the fourth distal tarsal, producing a crude facsimile of the lacertilian mesotarsal joint. Such a joint would have permitted, as in lacertilians, a wide range of movements which may have served several important functions: 1) maintaining an anteriorly directed pes to maximize the force of its posterior thrust during limb retraction, 2) placement of the pes close to the body midline for greater stride length and more efficient support and greater maneuverability during locomotion.

Type
Research Article
Copyright
Copyright © The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berman, D. S. 1993. Lower Permian vertebrate localities of New Mexico and their assemblages, p. 1121. In Lucas, S. G. and Zidek, J. (eds.), Vertebrate Paleontology in New Mexico. New Mexico Museum of Natural History and Science, Bulletin No. 2.Google Scholar
Berman, D. S. 2000. Origin and early evolution of the amniote occiput. Journal of Paleontology, 74:938956.CrossRefGoogle Scholar
Berman, D. S., and Sumida, S. S. 1995. New cranial material of the rare diadectid Desmatodon hesperis (Diadectomorpha) from the Late Pennsylvanian of central Colorado. Annals of Carnegie Museum, 64:315336.Google Scholar
Berman, D. S., Sumida, S. S., and Lombard, R. E. 1992. Reinterpretation of the temporal and occipital regions in Diadectes and the relationships of diadectomorphs. Journal of Paleontology, 66:481499.CrossRefGoogle Scholar
Berman, D. S., Sumida, S. S., and Martens, T. 1998a. Diadectes (Diadectomorpha: Diadectidae) from the Early Permian of central Germany, with description of a new species. Annals of Carnegie Museum, 67:5393.Google Scholar
Berman, D. S., Henrici, A. C., and Sumida, S. S. 1998b. Taxonomic status of the Early Permian Helodectes paridens Cope (Diadectidae) with discussion of occlusion of diadectid marginal dentitions. Annals of Carnegie Museum, 67:181196.Google Scholar
Caldwell, M. W. 1994. Developmental constraints and limb evolution in Permian and extant lepidosauromorph diapsids. Journal of Vertebrate Paleontology, 14:459471.CrossRefGoogle Scholar
Carroll, R. L. 1964. The earliest reptiles. Journal of the Linnean Society (Zoology), 45:6183.Google Scholar
Carroll, R. L. 1970. The ancestry of reptiles. Philosophical Transactions of the Royal Society of London, Series B, 257:267308.Google Scholar
Carroll, R. L. 1995. Problems of the phylogenetic analysis of Paleozoic choanates. Bulletin of the Museum of Natural History, Paris, 17:389445.Google Scholar
Carroll, R. L. 1997. Patterns and Processes of Vertebrate Evolution. Cambridge Paleobiology Series 2, Cambridge University Press, Cambridge, 448 p.Google Scholar
Case, E. C., and Williston, S. W. 1913. Description of a nearly complete skeleton of Diasparactus zenos Case, p. 1735. In Permo-Carboniferous Vertebrates of New Mexico. Carnegie Institution of Washington, Publication no. 181.CrossRefGoogle Scholar
Eberth, D. A., and Berman, D. S. 1993. Stratigraphy, sedimentology and vertebrate paleoecology of the Cutler Formation redbeds (Pennsylvanian-Permian) of north-central New Mexico, p. 3349. In Lucas, S. G. and Zidek, J. (eds.), Vertebrate Paleontology in New Mexico. New Mexico Museum of Natural History and Science, Bulletin No. 2.Google Scholar
Eberth, D. A., Berman, D. S., Sumida, S. S., and Hopf, H. 2000. Lower Permian terrestrial paleoenvironments and vertebrate paleoecology of the Tambach Basin (Thuringia, central Germany): the upland holy grail. Palaios, 15:293313.2.0.CO;2>CrossRefGoogle Scholar
Fichter, J. 1998. Bericht über die Bergung einer 20 t schweren Fährtenplatte aus dem Tambacher Sandstein (Unter Perm) des Thüringer Waldes und erste Ergebnisse ichnologischer Studien. Philippia, 8:147208.Google Scholar
Fracasso, M. A. 1987. Braincase of Limnoscelis paludis Williston. Postilla, 201:122.Google Scholar
Gauthier, J. A., Kluge, A. G., and Rowe, T. 1988. The early evolution of the Amniota, p. 103155. In Benton, M. J. (ed.), The Phylogeny and Classification of the Tetrapods, Volume 1, Amphibians, Reptiles and Birds. Systematics Association Special Volume 35A. Clarendon Press, Oxford.Google Scholar
Godfrey, S. J. 1989. The postcranial anatomy of the Carboniferous tetrapod Greererpeton burkemorani Romer 1969. Philosophical Transactions of the Royal Society of London, B, 323:75153.Google Scholar
Haubold, H. 1998. The Early Permian tetrapod ichnofauna of Tambach, the changing concepts in ichnotaxonomy. Hallesches Jahrbuch Geowissenschaften, v. B, 20:120.Google Scholar
Heaton, M. J. 1980. The Cotylosauria: a reconsideration of a group of archaic tetrapods, p. 497551. In Panchen, A. L. (ed.), The Terrestrial Environment and the Origin of Land Vertebrates. Systematics Association Special Volume Number 15, Academic Press, New York and London.Google Scholar
Hentz, T. F. 1988. Lithostratigraphy and paleoenvironments of upper Paleozoic continental red beds, north-central Texas: Bowie (new) and Wichita (revised) groups. University of Texas, Austin, Bureau of Economic Geology Report of Investigations, 170:155.Google Scholar
Holmes, R. 1984. The Carboniferous amphibian Proterogyrinus scheelei Romer, and the early evolution of tetrapods. Philosophical Transactions of the Royal Society, London, Series B, 306:431524.Google Scholar
Hunt, A. P., and Lucas, S. G. 1998. Vertebrate tracks and the myth of the belly-dragging, tail-dragging tetrapods of the late Paleozoic, p. 6770. In Lucas, S. G., Estep, J. W., and Hoffer, J. M. (eds.), Permian Stratigraphy and Paleontology of the Robledo Mountains, New Mexico. New Mexico Museum of Natural History, Bulletin No. 12.Google Scholar
Kissel, R. A., Dilkes, D. W., and Reisz, R. R. 2001. A new captorhinid from the Lower Permian of Oklahoma, with comments on the homology of the astragalus of Captorhinus . Journal of Vertebrate Paleontology, 21:68A.Google Scholar
Laurin, M., and Reisz, R. R. 1995. A reevaluation of early amniote phylogeny. Zoological Journal of the Linnean Society, 113:165223.CrossRefGoogle Scholar
Laurin, M., and Reisz, R. R. 1997. A new perspective on tetrapod phylogeny, p. 959. In Sumida, S. S. and Martin, K. L. M. (eds.), Amniote Origins, Completing the Transition to Land. Academic Press, London,, 510 p.CrossRefGoogle Scholar
Lee, M. Y. S., and Spencer, P. 1997. Crown-clades, key characters and taxonomic stability: when is an amniote not an amniote?, p. 6184. In Sumida, S. S. and Martin, K. L. M. (eds.), Amniote Origins, Completing the Transition to Land. Academic Press, London,, 510 p.CrossRefGoogle Scholar
Moss, J. L. 1972. The morphology and phylogenetic relationships of the Lower Permian tetrapod Tseajaia campi Vaughn (Amphibia: Seymouriamorpha). University of California Publications in Geological Sciences, 998:172.Google Scholar
Olson, E. C. 1947. The family Diadectidae and its bearing on the classification of reptiles. Fieldiana, Geology, 7:253.Google Scholar
Peabody, F. E. 1951. The origin of the astragalus of reptiles. Evolution, 5:339344.CrossRefGoogle Scholar
Plummer, F. C., and Moore, R. C. 1921. Stratigraphy of the Pennsylvanian formations of north-central Texas. University of Texas Bulletin, 2143:1237.Google Scholar
Reisz, R. R. 1981. A diapsid reptile from the Pennsylvanian of Kansas. Special Publication of the Museum of Natural History. University of Kansas, No. 7, 74 p.Google Scholar
Rewcastle, S. C. 1980. Form and function in lacertilian knee and mesotarsal joints; a contribution to the analysis of sprawling locomotion. Journal of Zoology, London, 191:147170.CrossRefGoogle Scholar
Rewcastle, S. C. 1983. Fundamental adaptations in the lacertilian hind limb: a partial analysis of the sprawling limb posture and gait. Copeia, 1983:476487.CrossRefGoogle Scholar
Rieppel, O. 1993. Studies on skeleton formation in reptiles. IV. The homology of the reptilian (amniote) astragalus revisited. Journal of Vertebrate Paleontology, 13:3147.CrossRefGoogle Scholar
Romer, A. S. 1944. The Permian cotylosaur Diadectes tenuitectus . American Journal of Science, 242:139144.CrossRefGoogle Scholar
Romer, A. S. 1946. The primitive reptile Limnoscelis restudied. American Journal of Science, 244:149188.CrossRefGoogle Scholar
Romer, A. S. 1956. The Osteology of the Reptiles. The University of Chicago Press, Chicago, 772 p.Google Scholar
Romer, A. S. 1974. Stratigraphy of the Permian Wichita redbeds of Texas. Breviora, 427:131.Google Scholar
Romer, A. S., and Byrne, F. 1931. The pes of Diadectes: notes on the primitive tetrapod limb. Palaeobiologica, 4:2548.Google Scholar
Romer, A. S., and Price, L. W. 1940. Review of the Pelycosauria. Geological Society of America Special Paper, No. 28, 538 p.Google Scholar
Schaeffer, B. 1941. The morphological and functional evolution of the tarsus in amphibians and reptiles. Bulletin of the American Museum of Natural History, 78:395472.Google Scholar
Smithson, T. R., Carroll, R. L., Panchen, A. L., and Andrews, S. M. 1994. Westlothiana lizziae from the Viséan of East Kirkton, West Lothian, Scotland, and the amniote stem. Transactions of the Royal Society of Edinburgh, Earth Sciences, 84:383412.CrossRefGoogle Scholar
Sumida, S. S. 1997. Locomotor features of taxa spanning the origin of amniotes, p. 353398. In Sumida, S. S. and Martin, K. L. M. (eds.), Amniote Origins, Completing the Transition to Land. Academic Press, San Diego,, 510 p.CrossRefGoogle Scholar
Vaughn, P. P. 1955. The Permian reptile Araeoscelis restudied. Bulletin of the Museum of Comparative Zoology, Harvard University, 113:305467.Google Scholar
Vaughn, P. P. 1964. Vertebrates from the Organ Rock Shale of the Cutler Group, Permian of Monument Valley and vicinity, Utah and Arizona. Journal of Paleontology, 38:567583.Google Scholar
Vaughn, P. P. 1969. Upper Pennsylvanian vertebrates from the Sangre de Cristo Formation of central Colorado. Los Angeles County Museum, Contributions in Science, 164:128.Google Scholar
Vaughn, P. P. 1972. More vertebrates, including a microsaur, from the Upper Pennsylvanian of central Colorado. Contributions in Science, Los Angeles County Museum of Natural History, 223:128.Google Scholar
Welles, S. 1941. The mandible of a diadectid cotylosaur. University of California Publications in Geological Sciences, 25:423432.Google Scholar
Williston, S. 1911a. A new family of reptiles from the Permian of New Mexico. American Journal of Science, 31:378398.CrossRefGoogle Scholar
Williston, S. 1911b. American Permian vertebrates. University of Chicago Press, Chicago, p. 145.Google Scholar
Williston, S. 1912. Restoration of Limnoscelis, a cotylosaur reptile from New Mexico. American Journal of Science, 34:457468.CrossRefGoogle Scholar