Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-24T12:59:27.654Z Has data issue: false hasContentIssue false

First articulated stalked crinoids from the Mesozoic of South America: two new species from the Lower Cretaceous of the Neuquén Basin, west-central Argentina

Published online by Cambridge University Press:  23 April 2020

Darío G. Lazo
Affiliation:
Universidad de Buenos Aires, CONICET, Instituto de Estudios Andinos “Don Pablo Groeber”, Departamento de Ciencias Geológicas, Facultad de Ciencias Exactas y Naturales, Pabellón II, Ciudad Universitaria, 1428, Buenos Aires, Argentina
Graciela S. Bressan
Affiliation:
Universidad de Buenos Aires, CONICET, Instituto de Estudios Andinos “Don Pablo Groeber”, Departamento de Ciencias Geológicas, Facultad de Ciencias Exactas y Naturales, Pabellón II, Ciudad Universitaria, 1428, Buenos Aires, Argentina
Ernesto Schwarz
Affiliation:
Centro de Investigaciones Geológicas, Universidad Nacional de La Plata-CONICET, Diagonal 113 y 64 s/n, 1900, La Plata, Argentina
Gonzalo D. Veiga
Affiliation:
Centro de Investigaciones Geológicas, Universidad Nacional de La Plata-CONICET, Diagonal 113 y 64 s/n, 1900, La Plata, Argentina

Abstract

Two new isocrinids are described from the Lower Cretaceous Agrio Formation of the Neuquén Basin, west-central Argentina. Isocrinus (Chladocrinus) covuncoensis new species is based on several beautifully preserved specimens from Valanginian beds of the Pilmatué Member. It is characterized by a small size, multiramose crown with six arm divisions, 240 arm tips, mostly isotomous branching, seven (or rarely eight) secundibrachials, smooth and stout column, short noditaxis, and pentalobate columnals. The species occurs in a 30 m thick interval of cross-bedded sandstones and mixed clastic-carbonate sediments that represent the migration of large, tidally influenced, subaqueous dunes developed in the offshore. Sudden burial of crinoids that dwelled on the dune toes and interdunes, possibly by the acceleration of the lee face migration, provided the exceptional preservation of specimens and thus this finding can be considered as a local crinoid Konservat Lagerstätte. Isocrinus (Chladocrinus) pehuenchensis new species is described from a single articulated specimen preserved in a silty calcareous concretion collected from a late Hauterivian concretion level of the Agua de la Mula Member. It is characterized by isotomous branching, eight or nine secundibrachials (IIBr), slender column ornamented with medial ridge of fine tubercles, interradius acuminated with fine tubercles on its tip, short noditaxis, and pentastellate columnals. It is associated with low-energy fall-out deposits in the offshore. The excellent state of preservation was due to an early cementation process by carbonate that enhanced lithification around the specimen.

UUID: http://zoobank.org/4763ae70-9d0a-4015-b1c9-6a7ceeedfb1a

Type
Articles
Copyright
Copyright © 2020, The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aberhan, M., 1993, Benthic macroinvertebrate associations on a carbonate-clastic ramp in segments of the Early Jurassic back-arc basin of northern Chile: Revista Geológica de Chile, v. 20, p. 105136.Google Scholar
Agassiz, J.L.R., 1836, Prodrome d'une Monographie des Radiaires ou Echinodermes: Mémoires de la Société d'Histoire Naturelle de Neuchâtel, v. 1 (1835), p. 168199.Google Scholar
Aguirre-Urreta, M.B. and Rawson, P.F., 1993, The Lower Cretaceous ammonite Paraspiticeras from the Neuquén Basin, west-central Argentina: Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, v. 188, p. 5169.Google Scholar
Aguirre-Urreta, M.B. and Rawson, P.F., 2010, Lower Cretaceous ammonites from the Neuquén Basin, Argentina: the neocomitids of the Pseudofavrella angulatiformis Zone (upper Valanginian): Cretaceous Research, v. 31, p. 321343.CrossRefGoogle Scholar
Aguirre-Urreta, M.B. and Rawson, P.F., 2012, Lower Cretaceous ammonites from the Neuquén Basin, Argentina: a new heteromorph fauna from the uppermost Agrio Formation: Cretaceous Research, v. 35, p. 208216.CrossRefGoogle Scholar
Aguirre-Urreta, M.B., Mourgues, A.F., Rawson, P.F., Bulot, L.G., and Jaillard, E., 2007, The Lower Cretaceous Chañarcillo and Neuquén Andean basins: ammonoids biostratigraphy and correlations: Geological Journal, v. 42, p. 143173.Google Scholar
Aguirre-Urreta, M.B., Lazo, D.G., Griffin, M., Vennari, V., Parras, A.M., Cataldo, C., Garberoglio, R., and Luci, L., 2011, Megainvertebrados del Cretácico y su importancia bioestratigráfica, in Leanza, H.A., Arregui, C., Carbone, O., Danieli, J.C., and Vallés, J.M., eds., Geología y Recursos Naturales de la Provincia del Neuquén: Relatorio del XVIII Congreso Geológico Argentino, p. 465488.Google Scholar
Aguirre-Urreta, M.B., Naipauer, M., Lescano, M., López-Martínez, R., Pujana, I., Vennari, V., De Lena, L., Concheyro, A., and Ramos, V.A., 2019, The Tithonian chrono-biostratigraphy of the Neuquén Basin and related Andean areas: a review and update: Journal of South American Earth Sciences, v. 92, p. 350367.CrossRefGoogle Scholar
Ausich, W.I., Buckley, R.A., and Plint, A.G., 2011, Nearshore articulate crinoid from the Albian of Alberta Canada (Early Cretaceous, Echinodermata): Canadian Journal of Earth Sciences, v. 48, p. 719727.CrossRefGoogle Scholar
Cataldo, C.S., and Lazo, D.G., 2012, Redescription of Pleurotomaria gerthi Weaver, 1931 (Gastropoda, Vetigastropoda), from the Early Cretaceous of Argentina: new data on its age, associated palaeoenvironments and palaeobiogeographic affinities: Ameghiniana, v. 49, p. 7595.CrossRefGoogle Scholar
Clark, W.B., and Twitchell, M.W., 1915, The Mesozoic and Ceonzoic Echinodermata of the United States: Monographs of the United States Geological Survey, v. 54, p. 1-341.Google Scholar
Cook, A.G., 2012, Cretaceous faunas and events, northern Eromanga Basin, Queensland: Episodes, v. 35, p. 153159.Google Scholar
Damborenea, S.E., Manceñido, M.O., and Riccardi, A.C., 1975, Biofacies y estratigrafía del Liásico de Piedra Pintada, Neuquén, Argentina: Primer Congreso Argentino de Paleontología y Bioestratigrafía, Tucumán, Actas 2, p. 173228.Google Scholar
Daroca, M.E., 2011, Análisis estructural, estratigráfico e interpretación sísmica del Anticlinal de Covunco, Cuenca Neuquina [M.Sc. Thesis]: Paris, Université Pierre et Marie Curie, 61 p.Google Scholar
Darwin, C., 1846, Geological observations on South America. Being the third part of The Geology of the Voyage of the Beagle, under the command of Capt. Fitzroy, R.N. during the years 1832 to 1836: London, Smith, Elder and Co., 279 p.Google Scholar
de Loriol, P., 1882–1889, Paléontologie francaise, Série. 1, Animaux invertébrés. Terrain Jurassique, 11, Crinoides, 1 (1882–1884), 627 p.; 2 (1884–1889), Paris, G. Masson, 580 p.Google Scholar
Desor, E., 1845, Resume de ses etudes sur les crinoides fossiles de la Suisse: Bulletin de la Societe neuchateloise des Sciences naturelles, v. 1, p. 211222.Google Scholar
Etheridge, R., 1901, Additional notes on the palaeontology of Queensland. Part 2: Queensland Geological Survey Bulletin, v. 13, 37 p.Google Scholar
Etheridge, R., 1904, Notes on Australian Cretaceous fossils: Records of the Australian Museum, v. 5, p. 248252.CrossRefGoogle Scholar
Fearnhead, F.E., 2008, Towards a systematic standard approach to describing fossil crinoids, illustrated by the redescription of a Scottish Silurian Pisocrinus de Koninck: Scripta Geologica, v. 136, p. 3961.Google Scholar
Ferre, B., Walter, S., and Bengston, P., 2005, Roveacrinids in mid-Cretaceous biostratigraphy of the Sergipe Basin, northeastern Brazil: Journal of South American Earth Sciences, v. 19, p. 259272.CrossRefGoogle Scholar
Gentili, A., 1950, Descripción Geológica de la hoja 35c, Ramón Castro (Neuquén): Boletín Dirección Nacional de Minería, v. 72, p. 147.Google Scholar
Gislén, T., 1924, Echinoderm studies: Zoologisk Bidragfrån Uppsala 9, 330 p.Google Scholar
Hess, H., 1999, Chapter 25: Middle Jurassic of Northern Switzerland, in Hess, H., Ausich, W.I., Brett, C.E., and Simms, M.J., eds., Fossil Crinoids: Cambridge, Cambridge University Press, p. 203215.Google Scholar
Hess, H., 2012, Crinoids from the Middle Jurassic (Bajocian–Lower Callovian) of Ardèche, France: Swiss Journal of Palaeontology, v. 131, p. 211253.CrossRefGoogle Scholar
Hess, H., and Gale, A.S., 2010, Crinoids from the Shenley Limestone (Albian) of Leighton Buzzard, Bedfordshire, UK: Journal of Systematic Palaeontology, v. 8, p. 427447.CrossRefGoogle Scholar
Hess, H., and Messing, C.G., 2011, Crinoidea, in Selden, P.A., ed., Treatise on Invertebrate Paleontology, Part T, Echinodermata 2 Revised, Volume 3: Lawrence, Kansas, Geological Society of America (and The University of Kansas Press), 261 p.Google Scholar
Howchin, W., 1921, Crinoids from the Cretaceous beds of Australia, with description of a new species: The Transactions of the Royal Society of South Australia, v. 45, p. 14.Google Scholar
Howell, J.A., Schwarz, E., Spalletti, L.A., and Veiga, G.D., 2005, The Neuquén Basin: an overview, in Veiga, G.D., Spalletti, L.A., Howell, J.A., and Schwarz, E., eds., The Neuquén Basin, Argentina: A Case Study in Sequence Stratigraphy and Basin Dynamics. London, Geological Society Special Publications, v. 252, p. 114.Google Scholar
Hunter, A.W., and Zonneveld, J-P., 2008, Palaeoecology of Jurassic encrinites: reconstructing crinoid communities from the Western Interior Seaway of North America : Palaeogeography, Palaeoclimatology, Palaeoecology, v. 263, p. 5870.Google Scholar
Hunter, A.W., Oji, T., Ewin, T.A.M., and Kitazawa, K., 2011, Chariocrinus japonicus, a new species of isocrinid crinoid (Articulata) from the Lower Cretaceous of Takayama City, central Japan: Bulletin of the Mizunami Fossil Museum, v. 37, p. 115121.Google Scholar
Hunter, A.W., Larson, N. L., Landman, N.H., and Oji, T., 2016, Lakotacrinus brezinai n. gen. n. sp., a new stalked crinoid from cold methane seeps in the Upper Cretaceous (Campanian) Pierre Shale, South Dakota, United States: Journal of Paleontology, v. 90, p. 506524.CrossRefGoogle Scholar
Jäger, M., 2010, Crinoids from the Barremian (Lower Cretaceous) of the Serre de Bleyton (Drome, SE France): Annalen des Naturhistorischen Museums in Wien A Mineralogie Petrologie Geologie Palaeontologie Archaeozoologie Anthropologie Praehistorie, v. 112A, p. 733774.Google Scholar
Jagt, J.W.M., 1999, Late Cretaceous–early Palaeogene echinoderms and the K/T boundary in the southeast Netherlands and northeast Belgium, Part 2: Crinoids : Scripta Geologica, v. 116, p. 59255.Google Scholar
Keidel, J., 1925, Sobre la estructura tectónica de las capas petrolíferas en el oriente del territorio del Neuquén: Publicación N° 8, Dirección General de Minas, Geología e Hidrología (Sección: Geología), Ministerio de Agricultura de la Nación, República Argentina, 67 p.Google Scholar
Kietzmann, D.A., and Palma, R.M., 2009, Microcrinoideos saccocómidos en el Tithoniano de la Cuenca Neuquina. ¿Una presencia inesperada fuera de la región del Tethys?: Ameghiniana, v. 46, p. 695700.Google Scholar
Klikushin, V.G., 1982, Taxonomic survey of fossil isocrinids with a list of the species found in the USSR: Geobios, v. 15, p. 299325.Google Scholar
Klikushin, V.G., 1987, Crinoids from the Middle Liassic Rosso ammonitico beds: Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, v. 175, p. 235260.Google Scholar
Lach, R., 2016, Late Cretaceous sea lilies (Crinoids, Crinoidea) from the Miechów Trough, Southern Poland: Palaeontographica Abteilung a-Palaozoologie-Stratigraphie, v. 305, p. 91133.CrossRefGoogle Scholar
Lach, R., and Salamon, M.A., 2016, Late Cretaceous crinoids (Echinodermata) from the southwestern margin of the Holy Cross Mts. (southern Poland) and phylogenetic relationships among bourgueticrinids: Paläontologische Zeitschrift, v. 90, p. 503520.CrossRefGoogle ScholarPubMed
Lazo, D.G., 2004, Análisis de concentraciones fósiles del Cretácico Inferior de Cuenca Neuquina [Ph.D. dissertation]: Buenos Aires, Universidad de Buenos Aires, 337 p.Google Scholar
Lazo, D.G., and Luci, L., 2013, Revision of Valanginian Steinmanellinae bivalves from the Neuquén Basin, West-central Argentina, and their biostratigraphic implications: Cretaceous Research, v. 45, p. 6075.CrossRefGoogle Scholar
Lazo, D.G., Cichowolski, M., Rodríguez, D.L., and Aguirre-Urreta, M.B., 2005, Lithofacies, palaeocology and palaeoenvironments of the Agrio Formation, Lower Cretaceous of the Neuquén Basin, Argentina, in Veiga, G.D., Spalletti, L.A., Howell, J., and Schwarz, E., eds., The Neuquén Basin: A Case Study in Sequence Stratigraphy and Basin Dynamics: London, Geological Society Special Publications, v. 252, p. 295315.Google Scholar
Leanza, H.A., 1981, Una nueva especie de Myophorella (Trigoniidae-Bivalvia) del Cretácico Inferior de Neuquén, Argentina: Ameghiniana, v. 18, p. 19.Google Scholar
Leanza, H.A. and Hugo, C.A., 1997, Hoja Geológica 3969-III, Picún Leufú, provincia del Neuquén y Río Negro, República Argentina: Subsecretaría de Minería de la Nación, Instituto de Geología y Recursos Minerales, Servicio Geológico Minero Argentino, Boletín 218, p. 1135.Google Scholar
Leanza, H.A., Hugo, C.A., Repol, D., Gonzalez, R., and Danieli, J.C., 2005, Hoja geológica 3969-I, Zapala, provincia del Neuquén: Instituto de Geología y Recursos Minerales, Servicio Geológico Minero Argentino, Boletín 275: 1128.Google Scholar
Legarreta, L., and Uliana, M.A., 1991, Jurassic–Cretaceous marine oscillations and geometry of back-arc basin fill, central Argentine Andes: International Association of Sedimentology, Special Publication, v. 12, p. 429450.Google Scholar
Lescano, M., and Concheyro, A., 2009, Nanofósiles calcáreos de la Formación Agrio (Cretácico Inferior) en el sector sudoccidental de la Cuenca Neuquina, Argentina: Ameghiniana, v. 46, p. 7394.Google Scholar
Lisson, C.I., 1907, Contribución a la Geología de Lima y sus alrededores: Lima, Librería é Imprenta Gil, 124 p.Google Scholar
Miller, J.S., 1821, A Natural History of the Crinoidea, or lily-shaped animals; with observations on the genera, Asteria, Curvale, Comatula and Marsupites: Bristol, C. Frost, 150 p.Google Scholar
Moore, C., 1870, Australian Mesozoic geology and palaeontology: Quarterly Journal of the Geological Society of London, v. 26, p. 226261.Google Scholar
Moore, R.C., 1967, Unique stalked crinoids from Upper Cretaceous of Mississippi: The University of Kansas Paleontological Contributions, v. 17, p. 135.Google Scholar
Oji, T., 1985, Early Cretaceous Isocrinus from Northeast Japan: Palaeontology, v. 28, p. 629642.Google Scholar
Oji, T., Kanoh, M., Toshimitsu, S., and Tashiro, M., 1996, Nielsenicrinus japonicus new species (Echinodermata: Crinoidea) from the Late Cretaceous of Japan and its paleobiogeographic implications: Journal of Paleontology, v. 70, p. 964968.CrossRefGoogle Scholar
Olivero, E.B., Medina, F.A., and López C., M.I., 2009, The stratigraphy of Cretaceous mudstones in the eastern Fuegian Andes: new data from body and trace fossils: Revista de la Asociación Geológica Argentina, v. 64, p. 6069.Google Scholar
Palma, R.M., 1996, Analysis of carbonate microfacies in the Chachao Formation (Cretaceous), Barda Blanca, Malargüe, Mendoza Province Argentina: a cluster analytic approach: Carbonate and Evaporites, v. 11, p. 182194.CrossRefGoogle Scholar
Ramos, V.A., 1978, Los arrecifes de la Formación Cotidiano (Jurásico Superior) en la Cordillera Patagónica y su significado paleoclimático: Ameghiniana, v. 15, p. 97109.Google Scholar
Ramos, V.A., 1981, Descripción geológica de la Hoja 47 ab—“Lago Fontana” provincia del Chubut: Servicio Geológico Nacional, Ministerio de Economía, Subsecretaría de Estado de Minería, Boletín, v. 183, p. 176.Google Scholar
Rasmussen, H.W., 1961, A monograph on the Cretaceous Crinoidea: Biologiske Skrifterudgivetaf Det Kongelige Danske Videnskabernes Selskab, v. 12, p. 1428.Google Scholar
Reboulet, S., Rawson, P.F., Moreno-Bedmard, J.A., Aguirre-Urreta, M.B., Barragán, R., Bogomolov, Y., Company, M., González-Arreola, C., Stoyanova, V.I., Lukeneder, A., Matrion, B., Mitta, V., Randrianaly, H., Vašiček, Z., Baraboshkin, E.J., Berto, D., Bersac, S., Bogdanova, T.N., Bulot, L.G., Latil, J-L., Mikhailova, I.A., Ropolo, R., and Szives, O., 2011, Report on the 4th International Meeting of the IUGS Lower Cretaceous Ammonite Working Group, the “Kilian Group” (Dijon, France, 30th August 2010): Cretaceous Research, v. 32, p. 786793.CrossRefGoogle Scholar
Rodriguez, D.L., Pazos, P.J., and Aguirre-Urreta, M.B., 2007, Cretaceous ophiuroid trace fossils from the Neuquén Basin, Argentina: SEPM Special Publication, v. 88, p. 97105.Google Scholar
Rosas, S., Fontboté, L., and Tankard, A., 2007, Tectonic evolution and paleogeography of the Mesozoic Pucará Basin, central Peru: Journal of South American Earth Sciences, v. 24, p. 124.CrossRefGoogle Scholar
Salamon, M.A., 2009, Early Cretaceous (Valanginian) sea lilies (Echinodermata, Crinoidea) from Poland: Swiss Journal of Geosciences, v. 102, p. 7788.CrossRefGoogle Scholar
Salamon, M.A., 2018, Late Cretaceous echinoderms (crinoids and echinoids) from Chełm Quarry, eastern Poland: Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, v. 287/2, p. 153166.CrossRefGoogle Scholar
Salamon, M.A., and Gorzelak, P., 2010, Late Cretaceous crinoids (Crinoidea) from Eastern Poland: Palaeontographica Abteilung A, Palaozoologie-Stratigraphie, v. 291, p. 143.Google Scholar
Salamon, M.A., Ferré, B., and Gorzelak, P., 2019, Part T, Revised, Volume 1, Chapter 20: Biostratigraphic value of Mesozoic crinoids: Treatise Online 125:19.Google Scholar
Sieverts-Doreck, H., 1952, Isocrinida, in Moore, R.C., Lalicker, C.G., and Fischer, A.G., eds., Invertebrate Fossils: New York, McGraw-Hill Book Company, 766 p.Google Scholar
Sieverts-Doreck, H., 1953, Sous-classe 4. Articulata, in Priveteau, J., ed., Traité de Paléontologie. Volume 3: Paris, Masson and Cie, p. 756765.Google Scholar
Simms, M.J., 1989, British Lower Jurassic crinoids: Monograph of the Palaeontographical Society, v. 142, p. 1103.Google Scholar
Somoza, R., 2011, The Late Cretaceous paleomagnetic field in North America: a South American perspective: Canadian Journal of Earth Sciences, v. 48, p. 14831488.CrossRefGoogle Scholar
Spalletti, L.A., Veiga, G.D., and Schwarz, E., 2011, La Formación Agrio (Cretácico Temprano) en la Cuenca Neuquina, in Leanza, H.A., Arregui, C., Carbone, O., Danieli, J.C., and Vallés, J.M., eds., Geología y Recursos Naturales de la Provincia del Neuquén: Relatorio del XVIII Congreso Geológico Argentino, Neuquén, 2011, p. 161173.Google Scholar
Taylor, B.J., 1966, Taxonomy and morphology of Echinodermata from the Aptian of Alexander Island: British Antarctic Survey Bulletin, v. 8, p. 118.Google Scholar
Testa, V., and Bosence, D.W.J., 1999, Biological and physical control on the bedform generation in the Rio Grande do Norte inner shelf, Brasil: Sedimentology, v. 46, p. 279301.CrossRefGoogle Scholar
Ubaghs, G., 1978, Skeletal morphology of fossil crinoids, in Moore, R.C., and Teichert, C., eds., Treatise on Invertebrate Paleontology, Pt. T, Echinodermata 2, vol. 1: Boulder, Colorado and Lawrence, Kansas, Geological Society of America and University of Kansas Press, p. T58T216.Google Scholar
Veiga, G.D., and Schwarz, E., 2017, Facies characterization and sequential evolution of an ancient offshore dunefield in a semi-enclosed sea: Neuquén Basin, Argentina: Geo-Marine Letters, v. 37, p. 411426.CrossRefGoogle Scholar
Veiga, G.D., Spalletti, L.A., and Flint, S., 2002, Aeolian/fluvial interactions and high-resolution sequence stratigraphy of a non-marine lowstand wedge: the Avilé Member of the Agrio Formation (Lower Cretaceous), central Neuquén Basin, Argentina: Sedimentology, v. 49, p. 10011019.Google Scholar
Vergani, G.D., Tankard, A.J., Belotti, H.J., and Welsink, H.J., 1995, Tectonic evolution and paleogeography of the Neuquén Basin, Argentina: American Association of Petroleum Geologists Memoir, v. 62, p. 383402.Google Scholar
Weaver, C.E., 1931, Paleontology of the Jurassic and Cretaceous of West Central Argentina: Memoirs of the University of Washington, v. 1, p. 1595.Google Scholar
Whittle, R.J., Hunter, A.W., Cantrill, D.J., and McNamara, K.J., 2018, Globally discordant Isocrinida (Crinoidea) migration confirms asynchronous Marine Mesozoic Revolution: Communications Biology, v. 1, no. 46. doi:10.1038/s42003-018-0048-0.CrossRefGoogle ScholarPubMed
Žítt, J., Vodrážka, R., Hradecká, L., Svobodá, M., and Zágoršek, K., 2006, Late Cretaceous environments and communities as recorded at Chrtníky (Bohemian Cretaceous Basin, Czech Republic): Bulletin of Geosciences, v. 81, p. 4379.CrossRefGoogle Scholar
Zittel, K.A. von., 1876–1880, Handbuch der Palaeontologie, Band 1, Palaeozoologie, Abt. 1: München and Leipzig, R. Oldenbourg, 765 p.Google Scholar