Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-25T20:20:32.060Z Has data issue: false hasContentIssue false

The Emperador Limestone rediscovered: Early Miocene corals from the Culebra Formation, Panama

Published online by Cambridge University Press:  14 July 2015

Kenneth G. Johnson
Affiliation:
Department of Palaeontology, Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom,
Michael X. Kirby*
Affiliation:
Center for Tropical Paleoecology and Archaeology, Smithsonian Tropical Research Institute, Box 2072, Balboa, Republic of Panama
*
Florida Museum of Natural History, University of Florida, Balboa, Museum Road, PO Box 117800, Gainesville 32611-7800, <[email protected]>

Abstract

Caribbean reefs underwent significant biotic change during the Late Oligocene and Early Miocene. This was a critical time in the evolution of the modern Caribbean fauna characterized by increasing endemism resulting from regional extinction of lineages that survive in the modern Indo-Pacific. An understanding of the dynamics and potential causes of the Oligocene/Miocene transition, however, is hampered by the relative lack of well-preserved Oligocene to early Miocene coral faunas in the Caribbean. Here we examine new exposures in the Culebra Formation of Panama that contain a well-preserved coral fauna of Early Miocene age. Taxonomic, stratigraphic, and paleoecologic study of the Culebra Formation exposed along the Gaillard Cut of the Panama Canal allows us to infer the paleoenvironments and reef coral communities from the Panama Canal Basin during this critical interval. The Culebra Formation consists of a deepening upward sequence with shallow-lagoon sediments at the base, overlain by fringing reef facies in the middle of the section, and open-shelf to bathyal facies at the top of the section. We recovered 31 species of reef corals from a combination of new and old collections. Comparison of our collections with other Late Oligocene to Middle Miocene reef coral assemblages confirms that there was a major faunal turnover after deposition of the Upper Oligocene Antigua Formation. This turnover consisted of a large number of extinctions followed by an increased rate of first occurrences so that regional diversity did not change appreciably. Improved stratigraphic resolution at this and other Caribbean localities is required to understand fully the dynamics of change during the Oligocene/Miocene transition.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berggren, W. A., Kent, D. V., Swisher, C. C., and Aubry, M.-P. 1995. A revised Cenozoic geochronology and chronostratigraphy, p. 129212. In Berggren, W. A., Kent, D. V., Aubry, M.- P., and Hardenbol, J. (eds.), Geochronology, Time Scales, and Global Stratigraphic Correlation. SEPM Special Publication, 54.Google Scholar
Blacut, G., and Kleinpell, R. M. 1969. A stratigraphic sequence of benthonic smaller foraminifera from the La Boca Formation, Panama Canal Zone. Cushman Foundation for Foraminifera Research, Contributions, 20:122.Google Scholar
Blainville, H. M. de. 1830. Dictionnaire des sciences naturelles. Zoophytes, Paris, 60:297364.Google Scholar
Blow, W. H. 1969. Late Middle Eocene to Recent planktonic foraminiferal biostratigraphy. Proceedings of the First International Conference on Planktonic Microfossils (Geneva, 1967), Leiden, 1:199421.CrossRefGoogle Scholar
Bold, W. A. Van den. 1973. Ostracoda of the La Boca Formation, Panama Canal Zone. Micropaleontology, 18:410442.CrossRefGoogle Scholar
Budd, A. F. 2000. Diversity and extinction in the Cenozoic history of Caribbean reefs. Coral Reefs, 19:2535.CrossRefGoogle Scholar
Budd, A. F., Johnson, K. G., and Edwards, J. C. 1989. Miocene coral assemblages in Anguilla, B. W. I., and their implcations for the interpretation of vertical succession on fossil reefs. Palaios, 4:264275.CrossRefGoogle Scholar
Budd, A. F., Johnson, K. G., and Edwards, J. C. 1995. Caribbean reef coral diversity during the early to middle Miocene: An example from the Anguilla Formation. Coral Reefs, 14:109117.CrossRefGoogle Scholar
Budd, A. F., Johnson, K. G., and Stemann, T. A. 1996. Plio/Pleistocene turnover in the Caribbean reef coral fauna, p. 168204. In Jackson, J. B. C., Coates, A. G., and Budd, A. F. (eds.), Evolution and Environment in Tropical America. University of Chicago Press.Google Scholar
Budd, A. F., Petersen, R. A., and Mcneill, D. F. 1998. Stepwise faunal change during evolutionary turnover: A case study from the Neogene of Curacao, Netherlands Antilles. Palaios, 13:170188.CrossRefGoogle Scholar
Budd, A. F., Stemann, T. A., and Johnson, K. G. 1994. Stratigraphic distributions of genera and species of Neogene to Recent Caribbean reef corals. Journal of Paleontology, 68:951977.CrossRefGoogle Scholar
Budd, A. F., Johnson, K. G., Stemann, T. A., and Tompkins, B. H. 1999. Pliocene to Pleistocene reef coral assemblages in the Limon Group of Costa Rica. Bulletins of American Paleontology, 357:119158.Google Scholar
Coates, A. G. 1999. Lithostratigraphy of the Neogene strata of the Caribbean coast from Limon, Costa Rica, to Colon, Panama. Bulletins of American Paleontology, 357:516.Google Scholar
Coates, A. G., and Obando, J. A. 1996. The geologic evolution of the Central American isthmus, p. 2156. In Jackson, J. B. C., Budd, A. F., and Coates, A. G. (eds.), Evolution and Environment in Tropical America. University of Chicago Press.Google Scholar
Compton, R. R. 1985. Geology in the Field. John Wiley and Sons, New York, 398 p.Google Scholar
Duncan, P. M. 1863. On the fossil corals of the West Indian Islands, Pt. 1. Quarterly Journal of the Geological Society of London, 19:406458.CrossRefGoogle Scholar
Duncan, P. M. 1864. On the fossil corals of the West Indian Islands, Pt. 2. Quarterly Journal of the Geological Society of London, 20:2044.CrossRefGoogle Scholar
Duncan, P. M. 1873. On the older Tertiary formations of the West Indian Islands. Quarterly Journal of the Geological Society of London, 29:548565.CrossRefGoogle Scholar
Edinger, E. N., and Risk, M. J. 1994. Oligocene/Miocene extinction and geographic restriction of Caribbean corals: Roles of turbidity, temperature, and nutrients. Palaios, 9:576598.CrossRefGoogle Scholar
Escalante, G. 1990. The geology of southern Central America and western Colombia, p. 201230. In Dengo, G. and Case, J. E. (eds.), The Caribbean Region. Geology of North America. Vol. H. The Geological Society of America, Denver, Colorado.Google Scholar
Fagerstrom, J. A. 1987. The Evolution of Reef Communities. John Wiley and Sons, New York, 600 p.Google Scholar
Foster, A. B. 1986. Neogene paleontology in the northern Dominican Republic. 3. The family Poritidae (Anthozoa: Scleractinia). Bulletins of American Paleontology, 90:47123.Google Scholar
Frost, S. H. 1972. Evolution of Cenozoic Caribbean coral faunas. Transactions of the Caribbean Geological Conference, 6:461464.Google Scholar
Frost, S. H., and Langenheim, R. L. 1974. Cenozoic Reef Biofacies. Northern Illinois University Press, DeKalb, 388 p.Google Scholar
Frost, S. H., and Schafersman, S. D. 1978. Oligocene reef community succession, Damon Mound, Texas. Transactions of the Gulf Coast Association of Geological Societies, 28:143160.Google Scholar
Frost, S. H., and Weiss, M. P. 1979. Patch-reef communities and succession in the Oligocene of Antigua, West Indies. Geological Society of America Bulletin, 90(I):612616; 90(II):1094–1141.2.0.CO;2>CrossRefGoogle Scholar
Frost, S. H., Harbour, J. L., Beach, D. K., Realini, M. J., and Harris, P. M. 1983. Oligocene reef tract development, southwestern Puerto Rico, Pt. I, Text. Sedimenta, 9:1144.Google Scholar
Fukami, H., Budd, A. F., Paulay, G., Solé-cava, A., Aleen Chen, C., Iwao, K., and Knowlton, N. 2004. Conventional taxonomy obscures deep divergence between Pacific and Atlantic corals. Nature, 427:832835.CrossRefGoogle ScholarPubMed
Geister, J. 1992. Modern reef development and Cenozoic evolution of an oceanic island/reef complex; Isla de Providencia (western Caribbean Sea, Colombia). Facies, 27:170.CrossRefGoogle Scholar
Gerth, H. 1923. Die Anthozoenfauna des Juntertiärs von Borneo. Geological Reichsmuseum Leiden Sammlung, series 1, 10:37136.Google Scholar
Graham, A., Stewart, R. H., and Stewart, J. L. 1985. Studies in neotropical paleobotany. III. The Tertiary communities of Panama—Geology of the pollen-bearing deposits. Annals of the Missouri Botanical Garden, 72:485503.CrossRefGoogle Scholar
Hill, R. T. 1898. The geological history of the Isthmus of Panama and portions of Costa Rica. Bulletin of the Museum of Comparative Zoology, 28:151285.Google Scholar
Jackson, J. B. C., and Johnson, K. G. 2000. Life in the last few million years, p. 221235. In Erwin, D. H. and L Wing, S. (eds.), Deep Time: Paleobiology's Perspective. Paleobiology, supplement to Vol. 26.Google Scholar
Jackson, J. B. C., and Johnson, K. G. 2001. Measuring past biodiversity. Science, 293:24012404.CrossRefGoogle ScholarPubMed
Johnson, K. G. 2001. Middle Miocene recovery of Caribbean reef corals: New data from the Tamana Formation, Trinidad. Journal of Paleontology, 75:513526.2.0.CO;2>CrossRefGoogle Scholar
Johnson, K. G. 2003. New data for old questions. Paleobiology, 29:1921.2.0.CO;2>CrossRefGoogle Scholar
Johnson, K. G. In press. Reef coral diversity from the Late Oligocene Antigua Formation and temporal variation of local diversity on Caribbean Cenozoic reefs. Schriftenreihe der Erdwissenschaftlichen Kommissionen.Google Scholar
Johnson, K. G., and Filkorn, H. F. 2004. Collections Catalog of the Department of Invertebrate Paleontology. Natural History Museum of Los Angeles County. http://ip.nhm.org/ipdatabase, November 2004.Google Scholar
Johnson, K. G., Budd, A. F., and Stemann, T. A. 1995. Extinction selectivity and ecology of Neogene Caribbean corals. Paleobiology, 21:5273.CrossRefGoogle Scholar
Jones, D. S. 1997. The marine invertebrate fossil record of Florida, p. 90119. In Randazzo, A. F. and Jones, D. S. (eds.), The Geology of Florida. University Press of Florida, Gainesville.Google Scholar
Lamarck, J. B. P. 1816. Histoire Naturelle des Animaux sans Vertèbres. Vol. 2. Paris, 568 p.Google Scholar
Link, H. F. 1807. Beschreibung der Naturalien-Sammlungen der Universität Rostock, 3:161165.Google Scholar
MacDonald, D. F. 1919. The sedimentary formations of the Panama Canal Zone, with special reference to the stratigraphic relations of the fossiliferous beds. United States National Museum Bulletin, 103:525545.Google Scholar
Mann, P. 1995. Geologic and tectonic development of the Caribbean plate boundary in southern Central America. Geological Society of America Special Paper, 295, 349 p.Google Scholar
Reid, R. P., and MacIntrye, I. G. 1988. Foraminiferal-algal nodules from the Eastern Caribbean: Growth history and implications on the value of nodules as paleoenvironmental indicators. Palaios, 3:424435.CrossRefGoogle Scholar
Reineck, H.-E., and Singh, I. B. 1975. Depositional Sedimentary Environments, with Reference to Terrigenous Clastics. Springer-Verlag, New York, 549 p.Google Scholar
Saunders, J. B., Jung, P., and Biju-Duval, B. 1986. Neogene paleontology in the northern Dominican Republic, 1. Field surveys, lithology, environment, and age. Bulletins of American Paleontology, 89:179.Google Scholar
Schweigger, A. F. 1819. Beobachtungen auf Naturhistorischen Reisen. Anatomische-physiologische Untersuchungen über Corallen; nebst ein Anhange, Bemerkungen über die Bernstein enthaltend, Berlin, 127 p.Google Scholar
Scott, T. M. 1988. The lithostratigraphy of the Hawthorn Group (Miocene) of Florida. Florida Geological Survey Bulletin, 59:1148.Google Scholar
Stemann, T. A. 2004. Reef corals of the White Limestone Group of Jamaica. Cainozoic Research, 3:83107.Google Scholar
Stewart, R. H., Stewart, J. L., and Woodring, W. P. 1980. Geologic map of the Panama Canal and vicinity, Republic of Panama. United States Geological Survey Miscellaneous Investigations Series, Map I-1232.Google Scholar
“Tommy Guardia.” 1985. Topographic map of Alcalde Diaz, 1:50000: Instituto Geografico Nacional Panama City, Panama.Google Scholar
Vaughan, T. W. 1919. Fossil corals from Central America, Cuba, and Porto Rico, with an account of the American Tertiary, Pleistocene, and Recent coral reefs. United States National Museum Bulletin, 103:189524.Google Scholar
Vaughan, T. W., and Hoffmeister, J. E. 1926. Miocene corals from Trinidad. Carnegie Institute of Washington Publication, 344:105134.Google Scholar
Weisbord, N. E. 1973. New and little-known corals from the Tampa Formation of Florida. Florida Bureau of Geology, geological bulletin, 56:1147.Google Scholar
Weiss, M. P. 1994. Oligocene limestones of Antigua, West Indies: Neptune succeeds Vulcan. Caribbean Journal of Science, 30:129.Google Scholar
Wood, R. 1999. Reef Evolution. Oxford University Press, 414 p.CrossRefGoogle Scholar
Woodring, W. P. 1957–1982. Geology and paleontology of Canal Zone and adjoining parts of Panama. United States Geological Survey Professional Paper 306, 759 p.Google Scholar
Woodring, W. P., and Thompson, T. F. 1949. Tertiary formations of Panama Canal Zone and adjoining parts of Panama. Bulletin of the American Association of Petroleum Geologists, 33:223247.Google Scholar
Wozniak, J., and de Wozniak, M. H. 1987. Bioestratigrafía de la región nor-central de la Serranía de Falcón, Venezuela nor-occidental. Boletín de Geología (Caracas), 16:101139.Google Scholar