Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T02:32:51.118Z Has data issue: false hasContentIssue false

The duplivincular ligament of recent Pinna Nobilis L., 1758: further evidence for pterineid ancestry of the Pinnoidea

Published online by Cambridge University Press:  20 May 2016

J. R. Garcia-March
Affiliation:
1Marine Biology Laboratory, University of Valencia. C/Dr. Moliner 50, 46100 Burjassot (Valencia), Spain,
A. Márquez-Aliaga
Affiliation:
2ICBiBE and Department of Geology, University of Valencia. C/Dr. Moliner 50, 46100 Burjassot (Valencia), Spain,
J. G. Carter
Affiliation:
3Department of Geological Sciences, CB #3315, University of North Carolina at Chapel Hill, NC 27599-3315,

Extract

A correct interpretation of ligament ontogeny and structure is essential for establishing phylogenetic relationships among higher taxa in the bivalve superorder Pteriomorphia. Recent research on pteriomorphian ligaments has focused on understanding ligament morphospace (Thomas et al., 2000; Ubukata, 2003) and evolutionary pathways. In this regard, studies of the transition from larval to post-larval and adult ligaments (Malchus, 2004) have been especially fruitful.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Carter, J. G. 1990. Evolutionary significance of shell microstruscture in the Paleotaxodonta, Pteriomorphia and Isofilibranchia (Bivalvia: Mollusca), p. 135296. In Carter, J. G. (ed.), Skeletal Biomineralization: Patterns, Processes and Evolutionary Trends. Volume I. Van Nostrand Reinhold, New York.Google Scholar
Carter, J. G. 2004. Evolutionary implications of a duplivincular ligament in the carboniferous pinnid Pteronites (Mollusca, Bivalvia, Pteriomorphia). Journal of Paleontology, 78(1):235240.2.0.CO;2>CrossRefGoogle Scholar
Carter, J. G., Campbell, D. C., and Campbell, M. R. 2000. Cladistic perspectives on early bivalve evolution, p. 4779. In Harper, E. M., Taylor, J. D., and Crame, J. A. (eds.), The Evolutionary Biology of the Bivalvia. Geological Society, London, Special Publications.Google Scholar
Cox, L. R. and Hertlein, L. G. 1969. Superfamily Pinnacea Leach, 1819, p. N281N285. In Cox, L. R., Newell, N. D., Boyd, D. W., Branson, C. C., Casey, R., Chavan, A., Coogan, A. H., Dechaseaux, C., Fleming, C. A., Haas, F., Hertlein, L. G., Kauffman, E. G., Keen, A. M., LaRocque, A., McAlester, A. L., Moore, R. C., Nuttall, C. P., Perkins, B. F., Puri, H. S., Smith, L. A., Soot-Ryen, T., Stenzel, H. B., Trueman, E. R., Turner, R. D., and Weir, J. (eds.), Treatise on Invertebrate Paleontology, Pt. N, Vol. 1 of 3. Mollusca 6, Bivalvia, xxxviii + 489 p.The Geological Society of America and the University of Kansas Press.Google Scholar
García-March, J. R. 2005. Aportaciones al conocimiento de la Biología de Pinna nobilis Linneo, 1758 (Mollusca: Bivalvia) en el litoral mediterráneo Ibérico. Publication Service of the University of Valencia, Valencia, 332 p.Google Scholar
García-March, J. R., García-Carrascosa, A. M., Peña, A. L., and Wang, Y. G. 2007. Study of the population structure, mortality, and growth of Pinna nobilis located at different depths in Moraira bay. Marine Biology, 150:861871.Google Scholar
Gmelin, J. F. 1791. Systema Naturae Linnaei. G.E. Beer, Germania, 3371 p.Google Scholar
Hippeau-Jaquotte, R. 1974. Étude des crevettes Pontoniinae (Paleomonidae) associees aux mollusques Pinnidae a Tulear (Madagascar) 5. L'infestation dans les conditions naturelles. Tethys (2-5):383402.Google Scholar
Lightfoot, J. 1786. A Catalogue of the Portland Museum, Lately the Property of the Duchess Dowager of Portland, Deceased. Skinner and Co., London, viii + 194 p.Google Scholar
Linné, C. 1758. Systema Naturae. I, (tenth edition.)707 p.Google Scholar
Malchus, N. 2004. Constraints in the ligament ontogeny and evolution of pteriomorphian bivalvia. Palaeontology, 47(6): 15391574.CrossRefGoogle Scholar
Richardson, C. A., Peharda, M., Kennedy, H., Kennedy, P., and Onofri, V. 2004. Age, growth rate and season of recruitment of Pinna nobilis (L) in the Croatian Adriatic determined from Mg: Ca and Sr: Ca shell profiles. Journal of Experimental Marine Biology and Ecology, 299(1): 116.CrossRefGoogle Scholar
Thomas, R. D. 1975. Functional morphology, ecology and evolutionary conservatism in the Glycymeridae (Bivalvia). Palaeontology, 18:217254.Google Scholar
Thomas, R. D. K., Madzvamuse, A., Maini, P. K., and Wathen, A. J. 2000. Growth patterns of noetiid ligaments: implications of developmental models for the origin of an evolutionary novelty among arcoid bivalves, p. 279289. In Harper, E. M., Taylor, J. D., and Crame, J. A. (eds.), Evolutionary Biology of the Bivalvia. Geological Society, London, Special Publication 177.Google Scholar
Templado, J. 2004. Pinna nobilis, p. 8689. In Templado, J. and Calvo, M. (eds.), Guía de Invertebrados y Peces Marinos Protegidos por la Legislación Nacional e Internacional. Ministerio de Medio Ambiente. Organismo Autónomo de Parques Nacionales, Madrid.Google Scholar
Ubukata, T. 2003. A theoretical morphologic analysis of bivalve ligaments. Paleobiology, 29(3):369380.Google Scholar
Waller, T. R. 1990. The evolution of ligament systems in the Bivalvia, p. 4971. In Morton, B. (ed.), The Bivalvia-Proceedings of a Memorial Symposium in Honour of Sir Charles Maurice Yonge, Edinburgh, 1986. Hong Kong University Press, Hong Kong.Google Scholar
Yonge, C. M. 1953. Form and habit in Pinna carnea Gmelin. Philosophical Transactions of the Royal Society of London, series B, 237:335374.Google Scholar