Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-13T03:10:27.399Z Has data issue: false hasContentIssue false

Diachronous Increase in Early Cambrian Ichnofossil Size and Benthic Faunal Activity in Different Climatic Regions

Published online by Cambridge University Press:  15 October 2015

Takafumi Mochizuki
Affiliation:
Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan, Graduate School of Environmental Sciences, Nagoya University, Nagoya 464-8601, Japan
Tatsuo Oji
Affiliation:
Nagoya University Museum, Nagoya University, Nagoya 464-8601, Japan,
Yuanlong Zhao
Affiliation:
Institute of Palaeontology, College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550003, China, ; ;
Jin Peng
Affiliation:
Institute of Palaeontology, College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550003, China, ; ;
Xinglian Yang
Affiliation:
Institute of Palaeontology, College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550003, China, ; ;
Sersmaa Gonchigdorj
Affiliation:
Mongolian University of Science and Technology, Ulaanbaatar, Mongolia,

Abstract

In order to clarify the pattern of diversification and processes of biological activity during the Cambrian radiation, ichnofossils were comparatively studied in the early Cambrian sections of Newfoundland, South China and western Mongolia. Special attention was paid to size distributions of the most common ichnogenus, Planolites, and the densities of all the observed ichnofossils that preserve animal activity as expressed by bedding plane bioturbation indices (BPBI).

From the Fortune Head section in Newfoundland, a clear size increase in the ichnogenus Planolites is confirmed from the Treptichnus pedum Zone to the overlying Rusophycus avalonensis Zone. The BPBI also shows much stronger biological activity in the R. avalonensis Zone than in the T. pedum Zone. In Meishucun, South China and Gobi-Altai, Mongolia, however, a variety of Planolites sizes had already appeared in the T. pedum Zone, and the BPBI's on some bedding surfaces of the T. pedum Zone are already comparable to those in the R. avalonensis Zone in Newfoundland. In the earliest Cambrian, diversification and increase in the biological activity of the benthic fauna were diachronous in the wide geographic scale, starting earlier at lower latitudes (South China and western Mongolia) than at higher latitudes (Newfoundland), reflecting differences in the onset of Cambrian benthic animal activity under different climatic conditions.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bengtson, S. and Fletcher, T. P. 1983. The oldest sequence of skeletal fossils in the lower Cambrian of southeastern Newfoundland. Canadian Journal of Earth Sciences, 20:525536.CrossRefGoogle Scholar
Bezzubetsev, V. V. 1963. On the Precambrian–Cambrian stratigraphy of the Dzabkhan River Basin. Materials on the Geology of MPR. Gostopotekhizdat 1963, 2942. (In Russian) Google Scholar
Bottjer, D. J., Hagadorn, J. W., and Dornbos, S. Q. 2000. The Cambrian substrate revolution. GSA Today, 10:17.Google Scholar
Brasier, M. D., Cowie, J. W., and Taylor, M. 1994. Decision on the Precambrian–Cambrian boundary stratotype. Episodes, 17:38.CrossRefGoogle Scholar
Brasier, M. D., Dorjnamjaa, D., and Lindsay, J. F. 1996. The Neoproterozoic to early Cambrian in southwest Mongolia: an introduction. Geological Magazine, 133:365369.CrossRefGoogle Scholar
Carbone, C. and Narbonne, G. M. 2014. When life got smart: the evolution of behavioral complexity through the Ediacaran and early Cambrian of NW Canada. Journal of Paleontology, 88:309330.CrossRefGoogle Scholar
Chen, J.-Y., Zhou, G.-Q., Zhu, M.-Y., and Yeh, K.-Y. 1996. The Chengjiang Biota: A Unique Window of the Cambrian Explosion. National Museum of Natural Science, Taiwan. (In Chinese) Google Scholar
Chen, Z., Zhou, C., Meyer, M., Xiang, K., Schiffbauer, J. D., Yuan, X., and Xiao, S. 2013. Trace fossil evidence for Ediacaran bilaterian animals with complex behaviors. Precambrian Research, 224:690701.CrossRefGoogle Scholar
Conway Morris, S. 1998. The Crucible of Creation: The Burgess Shale and the Rise of Animals. Oxford University Press, Oxford, U. K. Google Scholar
Cowie, J. W. and Brasier, M. D. 1989. The Precambrian–Cambrian Boundary. Oxford Monograph on Geology and geophysics, no. 12, Oxford Science publications.Google Scholar
Crimes, T. P. 1987. Trace fossils and correlation of the late Precambrian and early Cambrian strata. Geological Magazine, 124:97119.CrossRefGoogle Scholar
Dornbos, S. Q., Bottjer, D. J., and Chen, J.-Y. 2004. Evidence for seafloor microbial mats and associated metazoan lifestyles in lower Cambrian phosphorites of Southwest China. Lethaia, 37:127137.Google Scholar
Droser, M. L., Jensen, S., Gehling, J. G., Myrow, P. M., and Narbonne, G. M. 2002. Lowermost Cambrian Ichnofabrics from the Chapel Island Formation, Newfoundland: implications for Cambrian substrates. Palaios, 17:315.2.0.CO;2>CrossRefGoogle Scholar
Gehling, J. G., Jensen, S., Droser, M. L., Myrow, P. M., and Narbonne, G. M. 2001. Burrowing below the basal Cambrian GSSP, Fortune Head, Newfoundland. Geological Magazine, 138:213218.CrossRefGoogle Scholar
Goldring, R. and Jensen, S. 1996. Trace fossils and biofabrics at the Precambrian–Cambrian boundary interval in western Mongolia. Geological Magazine, 133:403415.CrossRefGoogle Scholar
Hagadorn, J. W. and Bottjer, D. J. 1999. Restriction of a late Neoproterozoic biotope; suspect-microbial structures and trace fossils at the Vendian–Cambrian transition. Palaios, 14:7385.CrossRefGoogle Scholar
Hibbard, J. P., van Staal, C. R., and Miller, B. V. 2007. Links among Carolinia, Avalonia, and Ganderia in the Appalachian peri-Gondwanan realm, p. 291311. In Sears, J. W., Harms, T. A. and Evenchick, C. A. (eds.), Whence the Mountains? Inquiries into the Evolution of Orogenic Systems: A Volume in Honor of Raymond A. Price. Geological Society of America Special Paper 433, Boulder CO. Google Scholar
Hou, X.-G., Laldridge, R., Bergstrom, J., Siveter, D. J., Siveter, D. J., and Feng, X.-H. 2004. The Cambrian Fossils of Chengjiang, China. Blackwell Publishing, Oxford, U.K. Google Scholar
Huang, B., Zhu, R. Y., Otofuji, Y., and Yang, Z. 2000. The early Paleozoic paleogeography of the North China block and the other major blocks of China. Chinese Science Bulletin, 45:1,0571,065.CrossRefGoogle Scholar
Hutchinson, R. D. 1962. Cambrian stratigraphy and trilobite faunas of southeastern Newfoundland. Geological Survey of Canada Bulletin 88, 37 p.Google Scholar
Jensen, S. 2003. The Proterozoic and earliest Cambrian trace fossil record; patterns, problems and perspectives. Integrative and Comparative Biology, 43:219228.CrossRefGoogle ScholarPubMed
Khomentovski, V. V. and Gibsher, A. S. 1996. The Neoproterozoic–lower Cambrian in northern Govi-Altai, western Mongolia: regional setting, lithostratigraphy and biostratigraphy. Geological Magazine, 133:371390.CrossRefGoogle Scholar
Li, Y. 1986. Proterozoic and Cambrian phosphorites-regional review: China, p. 4262. In Cook, P. J. and Shergold, J. H. (eds.), Phosphate Deposits of the World: Volume 1: Proterozoic and Cambrian Phosphorites. Cambridge University Press, Cambridge.Google Scholar
Lindsay, J. F., Brasier, M. D., Dorjnamjaa, D., Goldring, R., Kruse, P. D., and Wood, R. A. 1996. Facies and sequence controls on the appearance of the Cambrian biota in southwestern Mongolia: implications for the Precambrian–Cambrian boundary. Geological Magazine, 133:417428.CrossRefGoogle Scholar
Luo, H.-L., Jiang, Z.-W., Wu, X.-C., Song, X.-L, and Ouyang, L. 1982. The Sinian–Cambrian boundary in Eastern China. People's Publishing House, Beijing. (In Chinese) Google Scholar
Luo, H.-L., Jiang, Z.-W., Wu, X.-C., Song, X.-L., Ouyang, L., Ying, Y.-S., Lui, G.-Z., Zhang, S.-S., and Tao, Y.-G. 1984. Sinian–Cambrian boundary stratotype section in Meishucun, Jingling, Yunnan, China. People's Publishing House, Beijing. (In Chinese) Google Scholar
MacNaughton, R. B. and Narbonne, G. M. 1999. Evolution and ecology of Neoproterozoic–lower Cambrian trace fossils, NW Canada. Palaios, 14:97115.CrossRefGoogle Scholar
Maloof, A. C., Porter, S. M., Moore, J. L., Dudás, F. Ö., Bowring, S. A., Higgins, J. A., Fike, D. A., and Eddy, M. P. 2010. The earliest Cambrian record of animals and ocean geochemical change. Geological Society of America Bulletin, 122:1,7311,774.CrossRefGoogle Scholar
Marenco, K. N. 2006. Lower Cambrian trace fossils of the White-Inyo Mountains, eastern California: engineering an ecological revolution. Unpublished Master of Science dissertation, University of Southern California, 144 p.Google Scholar
Marenco, K. N. and Bottjer, D. J. 2010. The intersection grid technique for quantifying the extent of bioturbation on bedding planes. Palaios, 25:457462.CrossRefGoogle Scholar
Mata, S. A. and Bottjer, D. J. 2009. The paleoenvironmental distribution of Phanerozoic wrinkle structures. Earth-Science Reviews, 96:181195.CrossRefGoogle Scholar
Macdonald, F. A., Pruss, S. B., and Strauss, J. V. 2014. Trace fossils with spreiten from the late Ediacaran Nama Group, Namibia: complex feeding patterns five million years before the Precambrian–Cambrian boundary. Journal of Paleontology, 88:299308.CrossRefGoogle Scholar
McCabe, C., Channell, J. E. T., and Woodcock, N. H. 1992. Further paleomagnetic results from the Builth Wells Ordovician Inlier, Wales. Journal of Geophysical Research, 97:9,3579,370.CrossRefGoogle Scholar
McNamara, A., Mac Niocaill, C. A., van der Pluijm, B. A., and Van der Voo, R. 2001. West African proximity of the Avalon terrane in the latest Precambrian. Geological Society of America Bulletin, 113:1,1611,170.2.0.CO;2>CrossRefGoogle Scholar
Miller, M. F. and Smail, S. E. 1997. A semiquantitative field method for evaluating bioturbation on bedding planes. Palaios, 12:391396.CrossRefGoogle Scholar
Myrow, P. M. 1992. Bypass-zone tempestite facies model and proximality trends for an ancient muddy shoreline and shelf. Journal of Sedimentary Petrology, 62:99115.Google Scholar
Narbonne, G. M., Myrow, P. M., Landing, E., and Anderson, M. M. 1987. A candidate stratotype for the Precambrian–Cambrian boundary, Fortune Head, Burin Peninsula, southeastern Newfoundland. Canadian Journal of Earth Sciences, 24:1,2771,293.CrossRefGoogle Scholar
Qian, Y. and Bengtson, S. 1989. Palaeontology and biostratigraphy of the early Cambrian Meishucunian Stage in Yunnan Province, South China. Fossils and Strata, 24, 156 p.Google Scholar
Sawaki, Y., Nishizawa, M., Suo, T., Komiya, T., Hirata, T., Takahata, N., Sano, Y., Han, J., Kon, Y., and Maruyama, S. 2008. Internal structures and U-Pb ages of zircons from a tuff layer in the Meishucunian Formation, Yunnan Province, South China. Gondwana Research, 14:148158.CrossRefGoogle Scholar
Seilacher, A. and Pflüger, F. 1994. From biomats to benthic agriculture: a bio historic revolution. In Krumbein, W. E., Paterson, D. M., Stal, L. J. (eds.), Biostabilization of Sediments: Bibliotheks und informaionssystem der Carl von Ossietzky Universitat Oldernburg (BIS) Germany, p. 97105. (In German) Google Scholar
Stanley, S. M. 1976. Fossil data and the Precambrian–Cambrian evolutionary transition. American Journal of Science, 276:5676.CrossRefGoogle Scholar
Trench, A., Torsvik, T. H., and McKerrow, W. S. 1992. The paleogeographic evolution of Southern Britain during early Palaeozoic times: a reconciliation of palaeomagnetic and biogeographic evidence. Tectonophysics, 201:7582.CrossRefGoogle Scholar
Weber, B., Steiner, M., and Zhu, M.-Y. 2007. Precambrian–Cambrian trace fossils from the Yangtze Platform (South China) and the early evolution of bilaterian lifestyles. Palaeogeography, Palaeoclimatology, Palaeoecology, 254:328349.CrossRefGoogle Scholar
Widmer, K. 1950. The Geology of Hermitage Bay Area. Doctoral dissertation, Princeton University.Google Scholar
Wood, R., Zhuravlev, A. Y., and Anaaz, C. T. 1993. The ecology of lower Cambrian buildups from Zuune Arts, Mongolia: implications for early metazoan reef evolution. Sedimentology, 40:829853.CrossRefGoogle Scholar
Xing, Y., Ding, Q., Luo, H., He, T., and Wang, Y. 1983. The Sinian–Cambrian boundary of China. Bulletin of the Institute of Geology, Chinese Academy of Geological Sciences, 10. Special Issue for the Sinian–Cambrian boundary of China.Google Scholar
Xing, Y. S. and Luo, H. L. 1984. Precambrian–Cambrian boundary candidate, Meishucun, Jinning, Yunnan. Geological Magazine, 121:143154.Google Scholar
Xing, Y., Ding, Q., Luo, H., He, T., and Wang, Y. 1984. The Sinian–Cambrian boundary of China and its related problems. Geological Magazine, 121:155170.Google Scholar
Zhu, M.-Y. 1997. Precambrian–Cambrian trace fossils from eastern Yunnan, China: implications for Cambrian Explosion. Bulletin of National Museum of Natural Science, 10:275312.Google Scholar
Zhu, R.-X., Li, X.-H., Hou, X.-G., Pan, Y.-X., Wang, F., Deng, C.-L., and He, H.-Y. 2009. SIMS U-Pb zircon age of a tuff layer in the Meishucun section, Yunnan, southwest China: constraint on the age of the Precambrian–Cambrian boundary. Science in China Series D: Earth Sciences, 52:1,3851,392.CrossRefGoogle Scholar
Supplementary material: Image

Mochizuki et al. supplementary material

Mochizuki et al. supplementary material 1

Download Mochizuki et al. supplementary material(Image)
Image 2.6 MB
Supplementary material: Image

Mochizuki et al. supplementary material

Mochizuki et al. supplementary material 2

Download Mochizuki et al. supplementary material(Image)
Image 1.6 MB
Supplementary material: Image

Mochizuki et al. supplementary material

Mochizuki et al. supplementary material 3

Download Mochizuki et al. supplementary material(Image)
Image 2.3 MB
Supplementary material: Image

Mochizuki et al. supplementary material

Mochizuki et al. supplementary material 4

Download Mochizuki et al. supplementary material(Image)
Image 210.3 KB