Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-13T03:12:46.976Z Has data issue: false hasContentIssue false

Benthic auto-mobility in discoid Palaeacis from the Pennsylvanian of the Ardmore Basin, Oklahoma?

Published online by Cambridge University Press:  20 May 2016

Gregory E. Webb*
Affiliation:
Department of Geology, Texas A & M University, College Station 77843

Abstract

The enigmatic tabulate genus Palaeacis is composed primarily of species with wedge-shaped coralla. Palaeacis walcotti Moore and Jeffords, 1945, P. kingi Jeffords, 1955, and P. cf. P. walcotti, described below from the Morrowan (Pennsylvanian) Golf Course Formation of the Ardmore Basin, south-central Oklahoma, represent a distinctive morphogroup characterized by a discoid corallum. Discoid Palaeacis ranges from the Morrowan to the Missourian and, so far, is known only from the mid-continent region of North America. The discoid shape, combined with concentric skeletal accretion, large corallite diameters, complex calice floors, and porous skeleton suggest, based on comparisons with the functional morphology of recent scleractinians, that these corals were well suited to an auto-mobile (vagile) life strategy, much as are many Recent fungiid corals. Discoid Palaeacis inhabited environments with muddy or sandy, unconsolidated substrates and was associated with low-diversity, nonencrusting faunas. This association is consistent with an auto-mobile life strategy. Auto-mobility in Palaeacis would represent the first such reported occurrence in the Tabulata, and the first in Paleozoic colonial corals of all types.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, B. M. 1975. Implications for the fossil record of modern carbonate bank corals. Geological Society of America Bulletin, 86:203204.Google Scholar
Brett, C. E., and Cottrell, J. F. 1982. Substrate specificity in the Devonian tabulate coral Pleurodyctium. Lethaia, 15:247262.Google Scholar
Cook, P. L. 1963. Observations on live lunulitiform zoaria of Polyzoa. Cahiers de Biologie Marine, 4:407413.Google Scholar
Cromwell, D. W. 1974. The stratigraphy and environment of deposition of the lower Dornick Hills Group (Lower Pennsylvanian), Ardmore Basin, Oklahoma. Unpubl. , , 138 p.Google Scholar
Darrell, J. G., and Taylor, P. D. 1989. Scleractinian symbionts of hermit crabs in the Pliocene of Florida. Memoir of the Association of Australasian Palaeontologists, 8:115123.Google Scholar
Fabricius, F. 1964. Aktive lage-und ortsveränderung bei der koloniekoralle Manicina areolata und ihre paläoökologische bedeutung. Senckenbergiana Lethaia, 45:299323.Google Scholar
Gill, G. A., and Coates, A. G. 1977. Mobility, growth patterns and substrate in some fossil and Recent corals. Lethaia, 10:119134.Google Scholar
Gill, G. A., and Semenoff-Tian-Chansky, P. 1971. Analogie entre la structure du squelette chez les coraux Combophyllum (Dévonien) et Chomatoceris (Jurassique), en relation avec leur mode de vie. Comptes Rendus Hebdomadaires des Seances de L'Academie des Sciences, Paris (D), 273:4950.Google Scholar
Glynn, P. W. 1974. Rolling stones among the Scleractinia: mobile coralliths in the Gulf of Panama, p. 183198. Proceedings of the 2nd International Coral Reef Symposium 2, Great Barrier Reef Committee, Brisbane.Google Scholar
Goreau, T. F., and Yonge, C. M. 1968. Coral community on muddy sand. Nature, 217:421423.Google Scholar
Hill, D. 1981. Rugosa and Tabulata, 762 p. In Teichert, C. (ed.), Treatise on Invertebrate Paleontology, Pt. F, Coelenterata, Supplement 1. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Hoeksema, B. W. 1991. Evolution of body size in mushroom corals (Scleractinia: Fungiidae) and its ecomorphological consequences. Netherlands Journal of Zoology, 41:112129.Google Scholar
Hoeksema, B. W., and Moka, W. 1989. Species assemblages and phenotypes of mushroom corals (Fungiidae) related to coral reef habitats in the Flores Sea. Netherlands Journal of Sea Research, 23:149160.Google Scholar
Hubbard, J. A. E. B. 1972. Diaseris distorta: an “acrobatic” coral. Nature, 236:457459.CrossRefGoogle Scholar
Hubbard, J. A. E. B. 1973. Sediment-shifting experiments: a guide to functional behavior in colonial corals, p. 3142. In Boardman, R. S., Cheetham, A. H., and Oliver, W. A. Jr. (eds.), Animal Colonies. Dowden, Hutchinson & Ross, Inc., Stroudsburg, Pennsylvania.Google Scholar
Hubbard, J. A. E. B., and Pocock, Y. P. 1972. Sediment rejection by recent scleractinian corals: a key to paleo-environmental reconstruction. Sonderdruck aus der Geologischen Rundschau, 61:598626.Google Scholar
Jeffords, R. M. 1955. Mississippian corals from New Mexico and a related Pennsylvanian species. University of Kansas Paleontological Contributions, Coelenterata, Article, 3, 12 p.Google Scholar
Johnson, K. S., Amsden, T. W., Denison, R. E., Dutton, S. P., Goldstein, A. G., Rascoe, B. Jr., Sutherland, P. K., and Thompson, D. M. 1988. Southern midcontinent region, p. 307359. In Sloss, L. L. (ed.), Sedimentary Cover—North American Craton; U.S., Volume D-2. Geological Society of America, Boulder, Colorado.Google Scholar
Kiaer, J. 1906. Das Obersilur im kristianiagebiete. Videnskabs-Selskabets Skrifter. I. Mathematisk-Naturvidenskapelig Klasse B-2:1595.Google Scholar
Kissling, D. L. 1973. Circumrotary growth form in Recent and Silurian corals, p. 4358. In Boardman, R. S., Cheetham, A. H., and Oliver, W. A. Jr. (eds.), Animal Colonies. Dowden, Hutchinson & Ross, Inc., Stroudsburg, Pennsylvania.Google Scholar
Laborel, J. 1969. Les Peuplements de Madréporaires des cǒtes tropicales du Brésil. Annales Université d'Abidjan, Serie E, Ecologie, 2:1260.Google Scholar
Maley, M. P. 1986. Depositional history of the upper Morrowan (Pennsylvanian) strata of the Ardmore Basin, Oklahoma. Unpubl. , , 206 p.Google Scholar
Meek, F. B., Elmore, R. D., and Sutherland, P. K. 1988. Lithostratigraphy and depositional environments of the Springer and Lower Golf Course Formations, Ardmore Basin, Oklahoma, p. 189194. In Hayward, O. T. (ed.), South-Central Section of the Geological Society of America Centennial Field Guide, Volume 4. Geological Society of America, Boulder, Colorado.Google Scholar
Milne-Edwards, H. 1857. Histoire naturelle des coralliaires ou polypes proprement dits. Atlas. Roret, Paris, 11 p., 31 pl.Google Scholar
Milne-Edwards, H., and Haime, J. 1850. A monograph of the British fossil corals. First part: introduction. Palaeontographical Society Monograph, London, 71 p.CrossRefGoogle Scholar
Moore, R. C., and Jeffords, R. M. 1945. Description of Lower Pennsylvanian corals from Texas and adjacent states. University of Texas Publication, 4401:77208.Google Scholar
Murray, J. 1885. Reports of the scientific results of the voyage of H. M. S. Challenger during the years 1873-1876. Narrarative, 1, Pt. 2:5111110. London.Google Scholar
Neumann, B. E. E. 1988. Some aspects of life strategies of early Paleozoic rugose corals. Lethaia, 21:97114.Google Scholar
Pichon, M. 1974. Free living scleractinian coral communities in the coral reefs of Madagascar, p. 173181. In Proceedings of the 2nd International Coral Reef Symposium 2, Great Barrier Reef Committee, Brisbane.Google Scholar
Roemer, C. F. 1883. Lethaea geognostica, Theil 1: Lethaea palaeozoica, Part 2, p. 113544. Schweizerbart, Stuttgart.Google Scholar
Sando, W. J. 1969. Revision of some of Girty's invertebrate fossils from the Fayetteville Shale (Mississippian) of Arkansas and Oklahoma—corals. U.S. Geological Survey Professional Paper 606-B:914.Google Scholar
Straka, J. J. II. 1972. Conodont evidence of the age of Goddard and Springer Formations, Ardmore Basin, Oklahoma. American Association of Petroleum Geologists Bulletin, 56:10871099.Google Scholar
Sutherland, P. K., and Grayson, R. C. Jr. 1992. Morrowan and Atokan (Pennsylvanian) biostratigraphy in the Ardmore Basin, Oklahoma, p. 8199. In Sutherland, P. K. and Manger, W. L. (eds.), Recent Advances in Middle Carboniferous Biostratigraphy—A Symposium. Oklahoma Geological Survey Circular 94.Google Scholar
Sutherland, P. K., and Haugh, B. N. 1969. The discoid rugose coral Gymnophyllum: growth form and morphology, p. 2742. In Campbell, K. S. W. (ed.), Stratigraphy and Palaeontology: Essays in Honour of Dorothy Hill. Australian National University Press, Canberra.Google Scholar
Vaughan, T. W., and Wells, J. W. 1943. Revision of the suborders, families and genera of the Scleractinia. Geological Society of America, Special Paper 44, 363 p.Google Scholar
Veron, J. E. N. 1986. Corals of Australia and the Indo-Pacific. Angus and Robertson Publishers, North Ryde, New South Wales, 644 p.Google Scholar
Webb, G. E. 1989. Skeletal structure and microstructure in Visean Palaeacis from Queensland. Memoir of the Association of Australasian Palaeontologists, 8:199206.Google Scholar
Webb, G. E. 1990. Lower Carboniferous coral fauna of the Rockhampton Group, east-central Queensland. Memoir of the Association of Australasian Palaeontologists, 10:1167.Google Scholar
Webb, G. E. 1993. Skeletal microstructure and mode of attachment in Palaeacis species from the Mississippian and Pennsylvanian of northeastern Oklahoma and northwestern Arkansas. Journal of Paleontology, 67:167178.Google Scholar
Wood-Jones, F. 1907. On the growth-forms and supposed species in corals. Proceedings of the Zoological Society of London, 77:518556.Google Scholar
Yonge, C. M. 1973. The nature of reef-building (hermatypic) corals. Bulletin of Marine Science, 23:115.Google Scholar