Hostname: page-component-cc8bf7c57-n7pht Total loading time: 0 Render date: 2024-12-12T02:07:27.331Z Has data issue: false hasContentIssue false

An Archimedes-like cyclostome bryozoan from the Eocene of North Carolina

Published online by Cambridge University Press:  20 May 2016

Paul D. Taylor
Affiliation:
Department of Palaeontology, The Natural History Museum, London SW7 5BD, UK
Frank K. McKinney
Affiliation:
Department of Geology, Appalachian State University, Boone, North Carolina 28608

Abstract

A distinctive spiral unilaminate cyclostome bryozoan, recently discovered in the Eocene Castle Hayne Limestone Formation of eastern North Carolina, is described as Crisidmonea archimediformis new species. Colonies have a thickened spiral axis bearing systems of bifurcating branches. When worn and stripped of their branches, the resistant axes closely resemble the familiar screws of the Carboniferous to Permian fenestrate bryozoan genus Archimedes. However, the Eocene screws are shorter and become more loosely coiled with growth, corresponding to a helicospiral rather than a helical form. The paleoenvironment inhabited by C. archimediformis colonies is inferred to have been on the shallow (< 30 m depth) margin of an open marine, waveswept embayment. Autozooid distribution and the gradient of increasing apertural size from branch reverse to frontal sides in C. archimediformis resemble those of the living cyclostome Exidmonea atlantica and suggest colonial water currents that flowed upwards and inwards through the spiral colony. Polyascosoecia, a genus closely related to Crisidmonea, is shown to be an objective junior synonym of Reteporidea, and the new genus Polyascoeciella (type species Idmonea foraminosa Reuss) is introduced for species with exterior-walled gonozooids that were previously assigned to Polyascosoecia.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bassler, R. S. 1935. Bryozoa. Fossilium Catalogus. 1: Animalia, 67:1229.Google Scholar
Bassler, R. S. 1953. Bryozoa, p. G1G253. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Part G. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Baum, G. R. 1980. Petrography and depositional environments of the middle Eocene Castle Hayne Limestone, North Carolina. Southeastern Geology, 21:175196.Google Scholar
Borg, F. 1941. On the structure and relationships of Crisina (Bryozoa Stenolaemata). Arkiv för Zoologi, 33A, 11, 44 p.Google Scholar
Busk, G. 1852. An account of the Polyzoa, and sertularian Zoophytes, collected in the Voyage of the Rattlesnake, on the Coasts of Australia and the Loisiade Archipelago, &c., p. 343402. In MacGillivray, J., Narrative of the Voyage of the H. M. S. Rattlesnake, … during the years 1846-1850, Volume 1. Boone, London.Google Scholar
Canu, F. 1920. Bryozoaires Crétacés des Pyrénées. Bulletin de la Société Géologique de France, Série 4, 19 [for 1919]:186211.Google Scholar
Canu, F., and Bassler, R. S. 1920. North American Early Tertiary Bryozoa. Bulletin of the United States National Museum, 106:1879.Google Scholar
Canu, F., and Bassler, R. S. 1922. Studies on the cyclostomatous Bryozoa. Proceedings of the United States National Museum, 61, 160 p.CrossRefGoogle Scholar
D'Orbigny, A. 1849. Description de quelques genres nouveaux de Mollusques. Revue et Magasin de Zoologie Pure et Appliquée, Série 2, 1:499504.Google Scholar
D'Orbigny, A. 1851-4. Paléontologie Francaise. Terrain Crétacé, 5. Bryozoaires. Masson, Paris, 1192p.Google Scholar
Goldfuss, G. A. 1826-33. Petrefacta Germaniae, Abbildung und Beschreibungen der Petrefacten Deutschlands und der angreuzenden Länder. Teil 1. Arnz & Co., Dusseldorf, 76 p.Google Scholar
Gregory, J. W. 1896. Catalogue of the Fossil Bryozoa in the Department of Geology of the British Museum (Natural History). The Jurassic Bryozoa. British Museum (Natural History), London, 239 p.Google Scholar
Gregory, J. W. 1899. Catalogue of the Fossil Bryozoa in the Department of Geology of the British Museum (Natural History). The Cretaceous Bryozoa. Volume 1. British Museum (Natural History), London, 457 p.Google Scholar
Hagenow, F. v. 1851. Die Bryozoen der Maastrichter Kreidebildung. Fischer, Cassel, 111 p.Google Scholar
Hennig, A. 1894. Studier öfver Bryozoerna i Sveriges Kritsystem. II. Cyclostomata. Lunds Universitets Årsskrift, 30:146.Google Scholar
Hinds, R. W. 1975. Growth mode and homeomorphism in cyclostome Bryozoa. Journal of Paleontology, 49:875910.Google Scholar
Marsson, T. F. 1887. Die Bryozoen der weißen Schreibkreide der Insel Rügen. Palaeontologische Abhandlungen, 4, 112 p.Google Scholar
Martini, E. 1971. Standard Tertiary and Quaternary calcareous nannoplankton zonation, p. 739785. In Frainacci, A., (ed.), Proceedings of the Second Planktonic Conference. Edizioni Technoscienza, Rome.Google Scholar
McKinney, F. K. 1978. Astogeny of the lyre-shaped Carboniferous fenestrate bryozoan Lyroporella . Journal of Paleontology, 52:8390.Google Scholar
McKinney, F. K. 1979. Some paleoenvironments of the coiled fenestrate bryozoan Archimedes , p. 321336. In Larwood, G. P., and Abbott, M. B., (eds.), Advances in Bryozoology. Academic Press, London.Google Scholar
McKinney, F. K. 1980. Erect spiral growth in some living and fossil bryozoans. Journal of Paleontology, 54:597613.Google Scholar
McKinney, F. K. 1981. Planar branch systems in colonial suspension feeders. Paleobiology, 7:344354.Google Scholar
McKinney, F. K. 1983. Asexual colony multiplication by fragmentation: an important mode of genet longevity in the Carboniferous bryozoan Archimedes . Paleobiology, 9:3543.CrossRefGoogle Scholar
McKinney, F. K. 1986. Evolution of erect marine bryozoan faunas: repeated success of unilaminate species. American Naturalist, 128:795809.Google Scholar
McKinney, F. K. 1991a. Colonial feeding currents of Exidmonea atlantica (Cyclostomata). Bulletin de la Société Naturelles de l'Ouest de la France, Mémoire, HS 1:263270.Google Scholar
McKinney, F. K. 1991b. How phylogeny limits function—the example of Exidmonea . National Geographic Research and Exploration, 7:432441.Google Scholar
McKinney, F. K. 1993. Carboniferous biogeography of the bryozoan Archimedes in North America. Historical Biology, 7:7190.Google Scholar
McKinney, F. K., and Gault, H. W. 1980. Paleoenvironment of Late Mississippian fenestrate bryozoans, eastern United States. Lethaia, 13:127146.Google Scholar
McKinney, F. K., and Raup, D. M. 1982. A turn in the right direction: simulation of erect spiral growth in the bryozoans Archimedes and Bugula . Paleobiology, 8:101112.Google Scholar
McKinney, F. K., and Wass, R. E. 1981. The double helix form of branches and its relation to polymorph distribution in Spiralaria florea Busk, p. 159167. In Larwood, G. P., and Nielsen, C. (eds.), Recent and Fossil Bryozoa. Olsen & Olsen, Fredensborg.Google Scholar
McKinney, F. K., Listokin, M. R. A., and Phifer, C. D. 1986. Flow and polypide distribution in the cheilostome bryozoan Bugula and their inference in Archimedes . Lethaia, 19:8193.Google Scholar
McKinney, F. K., Taylor, P. D., and Zullo, V. A. 1993. Lyre-shaped hornerid bryozoan colonies: homeomorphy in colony form between Paleozoic Fenestrata and Cenozoic Cyclostomata. Journal of Paleontology, 67:343354.Google Scholar
Otte, L. J. 1986. Regional perspective on the Castle Hayne Limestone, p. 270276. In Textoris, D. A. (ed.), SEPM Guidebooks. Southeastern United States Third Annual Midyear Meeting.Google Scholar
Reuss, A. E. 1848. Die fossilen Polyparien des Wiener Tertiärbeckens. Haidengers Naturwissenshaftliche Abhandlungen, Wien, 2:1109.Google Scholar
Reuss, A. E. 1851. Ein Beitrag zur Palaeontologie der Tertiärschichten Oberschlesiens. Zeitschrift der Deutschen Geologischen Gesellschaft, 3:149184.Google Scholar
Reuss, A. E. 1866. Die Foraminiferen, Anthozoen und Bryozoen des deutschen Septarienthones.—Ein Beitrag zur Fauna der mitteloligozänen Tertiärschichten. Denkschriften der Kaiserlichen Akademie der Wissenschaften, Mathematisch-Naturwissenschaften Klasse, 25:117214.Google Scholar
Strathmann, R. R., Cameron, R. A., and Strathmann, M. F. 1984. Spirobranchus giganteus (Pallas) breaks a rule for suspension-feeders. Journal of Experimental Marine Biology and Ecology, 79:245249.Google Scholar
Vávra, N. R. 1991. Contributions to the taxonomy and morphology of Polyascosoecia (Bryozoa: Cyclostomata) and related forms. Bulletin de la Société Naturelles de l'Ouest de la France, Mémoire, HS 1:497504.Google Scholar
Voigt, E. 1984. Die Genera Reteporidea D'ORBIGNY, 1849 und Crisidmonea MARSSON (Bryozoa Cyclostomata) in der Maastrichter Tuffkreide (Oberes Maastrichtium) nebst Bemerkungen über Polyascosoecia CANU & BASSLER und andere ähnliche Gattungen. Mitteilungen aus dem Geologisch-Paläontologischen Institut der Universität Hamburg, 56:385412.Google Scholar
Voigt, E. 1987. Neue cyclostome Bryozoen aus der Maastrichter Tuffkreide (Ob. Maastrichtium). Paläontologische Zeitschrift, 61:4156.Google Scholar
Walcott, C. D. 1921. Report on the progress and condition of the United States National Museum for the year ending June 30, 1921. United States National Museum, Washington, 219 p.Google Scholar
Ward, L. W., Lawrence, D. R., and Blackwelder, B. W. 1978. Stratigraphic revision of the middle Eocene, Oligocene, and lower Miocene—Atlantic Coastal Plain of North Carolina. United States Geological Survey Bulletin, 1457-F, 23 p.Google Scholar
Worsley, T. R. and Laws, R. A. 1986. Calcareous nannofossil biostratigraphy of the Castle Hayne Limestone, p. 289296. In Textoris, D. A. (ed.), SEPM Guidebooks. Southeastern United States Third Annual Midyear Meeting.Google Scholar
Zullo, V. A. and Harris, W. B. 1987. Sequence stratigraphy, biostratigraphy, and correlation of Eocene through lower Miocene strata in North Carolina. Cushman Foundation for Foraminiferal Research, Special Publication, 24:197214.Google Scholar