Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-24T06:02:38.625Z Has data issue: false hasContentIssue false

Real-time Processing of Reflected GNSS Signals for Remote Sensing: System and Experiments

Published online by Cambridge University Press:  14 October 2011

Weiqiang Li
Affiliation:
(School of Electronic and Information Engineering, Beihang University, Beijing, China)
Dongkai Yang*
Affiliation:
(School of Electronic and Information Engineering, Beihang University, Beijing, China)
Bo Zhang
Affiliation:
(School of Electronic and Information Engineering, Beihang University, Beijing, China)
Mingli Li
Affiliation:
(School of Electronic and Information Engineering, Beihang University, Beijing, China)
Qishan Zhang
Affiliation:
(School of Electronic and Information Engineering, Beihang University, Beijing, China)

Abstract

The GNSS-R technique brings out the need for signal receiver systems to process both direct and reflected GNSS signals. This paper describes the architecture of a new GNSS-R receiver system (GRrSv.2) that features enhanced capabilities for remote sensing based on reflected Global Positioning System (GPS) signals. Signal processing issues including DDM calculation, Carrier and Code Generation and DDM Synchronization are presented. Aircraft- and land-based verification experiments for ocean winds, ocean Significant Wave Heights (SWH) and soil moisture have been performed and some primary results are presented in this paper.

Type
Research Article
Copyright
Copyright © The Royal Institute of Navigation 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Elfouhaily, T., Chapron, B., Katsaros, K. and Vandemark, D. (1997). A unified directional spectrum for long and short wind-driven waves. Journal of Geophysical Research, 102, 1578115,796.CrossRefGoogle Scholar
Garrison, J. L., Komjathy, A., Zavorotny, V. U. and Katzberg, S. J. (2002). Wind speed measurement using forward scattered GPS signals. Geoscience and Remote Sensing, IEEE Transactions on, 40, 5065.CrossRefGoogle Scholar
Gleason, S., Hodgart, S., Sun, Y., Gommenginger, C., Mackin, S., Adjrad, M. and Unwin, M. (2005). Detection and Processing of bistatically reflected GPS signals from low Earth orbit for the purpose of ocean remote sensing. Geoscience and Remote Sensing, IEEE Transactions on, 43, 12291241.CrossRefGoogle Scholar
Kaplan, E. D. and Hegarty, C. J. (2006). Understanding GPS: principles and applications, Artech House Publishers.Google Scholar
Katzberg, S. J., Torres, O., Grant, M. S. and Masters, D. (2006). Utilizing calibrated GPS reflected signals to estimate soil reflectivity and dielectric constant: Results from SMEX02. Remote sensing of environment, 100, 1728.CrossRefGoogle Scholar
Komjathy, A., Maslanik, J., Zavorotny, V. U., Axelrad, P. and Katzberg, S. J. (2000). Sea ice remote sensing using surface reflected GPS signals. Geoscience and Remote Sensing Symposium, 24–28, Jul., Honolulu.CrossRefGoogle Scholar
Lowe, S. T., Kroger, P., Franklin, G., Labrecque, J. L., Lerma, J., Lough, M., Marcin, M. R., Muellerschoen, R. J., Spitzmesser, D. and Young, L. E. (2002a). A delay/Doppler-mapping receiver system for GPS-reflection remote sensing. Geoscience and Remote Sensing, IEEE Transactions on, 40, 11501163.CrossRefGoogle Scholar
Lowe, S. T., Zuffada, C., Chao, Y., Kroger, P., Labreque, J. and Young, L. (2002b). 5-cm precision aircraft ocean altimetry using GPS reflections. Geophys. Res. Lett, 29, 4359–C4362.CrossRefGoogle Scholar
Marchan-Hernandez, J., Valencia, E., Rodriguez-Alvarez, N., Ramos-Perez, I., Bosch-Lluis, X., Camps, A., Eugenio, F. and Marcello, J. (2010). Sea-state determination using GNSS-R data. Geoscience and Remote Sensing Letters, IEEE, 7, 621625.CrossRefGoogle Scholar
Marchan-Hernandez, J. F., Camps, A., Rodriguez-Alvarez, N., Bosch-Lluis, X., Ramos-Perez, I. and Valencia, E. (2008). PAU/GNSS-R: Implementation, performance and first results of a real-time delay-Doppler map reflectometer using Global Navigation Satellite System signals. Sensors, 8, 30053019.CrossRefGoogle ScholarPubMed
Martin-Neira, M. (1993). A Passive Reflectometry and Interferometry System(PARIS)- Application to ocean altimetry. ESA journal, 17, 331355.Google Scholar
Masters, D., Axelrad, P. and Katzberg, S. (2004). Initial results of land-reflected GPS bistatic radar measurements in SMEX02. Remote sensing of environment, 92, 507520.CrossRefGoogle Scholar
Meehan, T., Esterhuizen, S., Franklin, G., Lowe, S., Munson, T., Robison, D., Spitzmesser, D., Tien, J. and Young, L. (2007). TOGA, a prototype for an optimal orbiting GNSS-R instrument. Geoscience and Remote Sensing Symposium, 23–28 Jul., Barcelona.CrossRefGoogle Scholar
Nogués-Correig, O., Gali, C., Campderros, S. and Rius, A. (2007). A GPS-reflections receiver that computes Doppler/delay maps in real time. Geoscience and Remote Sensing, IEEE Transactions on, 45, 156174.CrossRefGoogle Scholar
Rius, A., Cardellach, E. and Martin-Neira, M. (2010). Altimetric Analysis of the SeaSurface GPS-Reflected Signals. Geoscience and Remote Sensing, IEEE Transactions on, 48, 21192127.CrossRefGoogle Scholar
Rivas, M. B. and Martin-Neira, M. (2006). Coherent GPS reflections from the sea surface. Geoscience and Remote Sensing Letters, IEEE, 3, 2831.Google Scholar
Rivas, M. B., Maslanik, J. A. and Axelrad, P. (2010). Bistatic scattering of GPS signals off Arctic sea ice. Geoscience and Remote Sensing, IEEE Transactions on, 48, 15481553.CrossRefGoogle Scholar
Rodriguez-Alvarez, N., Bosch-Lluis, X., Camps, A., Vall-Llossera, M., Valencia, E., Marchan-Hernandez, J. F. and Ramos-Perez, I. (2009). Soil moisture retrieval using GNSS-R techniques: experimental results over a bare soil field. Geoscience and Remote Sensing, IEEE Transactions on, 47, 36163624.CrossRefGoogle Scholar
Sabia, R., Caparrini, M. and Ruffini, G. (2007). Potential synergetic use of GNSS-R signals to improve the sea-state correction in the sea surface salinity estimation: Application to the SMOS mission. Geoscience and Remote Sensing, IEEE Transactions on, 45, 20882097.CrossRefGoogle Scholar
Van NeE, D. and Coenen, A. (1991). New fast GPS code-acquisition technique using FFT. Electronics Letters, 27, 158160.CrossRefGoogle Scholar
Wiehl, M., Legr'esy, B. and Dietrich, R. (2003). Potential of reflected gnss signals for ice sheet remote sensing. Journal of electromagnetic waves and applications, 17, 10451047.CrossRefGoogle Scholar
Xin, W., Qiang, S., Xunxie, Z., Daren, L., Lianjun, S., Xiong, H., Giulio, R., Stephen, D. and Soulat, F. (2008). First China ocean reflection experiment using coastal GNSS-R. Chinese Science Bulletin, 53, 11171120.CrossRefGoogle Scholar
Yang, D., Zhang, Y., Lu, Y. and Zhang, Q. (2008). GPS reflections for sea surface wind speed measurement. Geoscience and Remote Sensing Letters, IEEE, 5, 569572.CrossRefGoogle Scholar
Yang, D. K., Wang, Y., Lu, Y., Li, W. Q. and Li, Z. W. (2010). GNSS-R data acquisition system design and experiment. Chinese Science Bulletin, 55, 38423846.CrossRefGoogle Scholar
Zavorotny, V. U. and Voronovich, A. G. (2000). Scattering of GPS signals from the ocean with wind remote sensing application. Geoscience and Remote Sensing, IEEE Transactions on, 38, 951964.CrossRefGoogle Scholar