Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-28T22:36:31.053Z Has data issue: false hasContentIssue false

Performance Evaluation of Kinematic BDS/GNSS Real-Time Precise Point Positioning for Maritime Positioning

Published online by Cambridge University Press:  18 September 2018

Fuxin Yang
Affiliation:
(College of Automation, Harbin Engineering University, Harbin 150001, China)
Lin Zhao
Affiliation:
(College of Automation, Harbin Engineering University, Harbin 150001, China)
Liang Li*
Affiliation:
(College of Automation, Harbin Engineering University, Harbin 150001, China)
Shaojun Feng
Affiliation:
(Centre for Transport Studies, Department of Civil and Environmental Engineering, Imperial College London, UK)
Jianhua Cheng
Affiliation:
(College of Automation, Harbin Engineering University, Harbin 150001, China)
*

Abstract

Real-time Precise Point Positioning (PPP) has been evolved as a cost-effective technique for highly precise maritime positioning. For a long period, maritime PPP technology has mainly relied on the Global Positioning System (GPS). With the revitalisation of GLONASS and the emerging BeiDou navigation satellite system (BDS), it is now feasible to investigate real-time navigation performance of multi-constellation maritime PPP with GPS, BDS and GLONASS. In this contribution, we focus on maritime PPP performance using real world maritime kinematic data and real-time satellite correction products. The results show that BDS has lower position accuracy and slower convergence time than GPS. The BDS and GPS combination has the best performance among the dual-constellation configurations. Meanwhile, the integration of BDS, GLONASS and GPS significantly improves the position accuracy and the convergence time. Some outliers in the single constellation configuration can be mitigated when multi-constellation observations are utilised.

Type
Research Article
Copyright
Copyright © The Royal Institute of Navigation 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alkan, R. M. and Öcalan, T. (2013). Usability of the GPS precise point positioning technique in marine applications. The Journal of Navigation, 66(4), 579588.Google Scholar
Bevis, M., Businger, S., Herring, T. A., Rocken, C., Anthes, R. A. and Ware, R. H. (1992). GPS meteorology: remote sensing of atmospheric water vapor using the Global Positioning System. Journal of Geophysical Research Atmospheres, 97(D14), 1578715801.Google Scholar
Boehm, J., Kouba, J. and Schuh, H. (2009). Forecast Vienna mapping functions 1 for real-time analysis of space geodetic observations. Journal of Geodesy, 83(5), 397401.Google Scholar
Boehm, J., Niell, A., Tregoning, P. and Schuh, H. (2006). Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data. Geophysical Research Letters, 33(7), L07304, doi:10.1029/2005GL025546.Google Scholar
Chen, G. and Herring, T. A. (1997). Effects of atmospheric azimuthal asymmetry on the analysis of space geodetic data. Journal of Geophysical Research Solid Earth, 102(B9), 2048920502.Google Scholar
China Satellite Navigation Office (CSNO). (2013). BeiDou Navigation Satellite System Signal in Space Interface Control Document. Available online: http://gge.unb.ca/test/beidou_icd_english.pdf} (accessed on 1 April 2013).Google Scholar
Collins, P. (2008). Isolating and estimating undifferenced GPS integer ambiguities. Proceedings of the 2008 National Technical Meeting of the Institute of Navigation, San Diego, CA, January, 720732.Google Scholar
Collins, P., Henton, J., Mireault, Y., Heroux, P., Schmidt, M., Dragert, H. and Bisnath, S. (2009). Precise point positioning for real-time determination of co-seismic crustal motion. Proceedings of ION GNSS 2009, Institute of Navigation, Savannah, USA. 22–25 September, 24792488.Google Scholar
Eldiasty, M. and Elsobeiey, M. (2015). Precise point positioning technique with IGS real-time service (RTS) for maritime applications. Positioning, 6(4), 7180.Google Scholar
Elsobeiey, M. and Al-Harbi, S. (2016). Performance of real-time precise point positioning using IGS real-time service. GPS Solutions, 20(3), 565571.Google Scholar
Fund, F., Perosanz, F., Testut, L. and Loyer, S. (2013). An integer precise point positioning technique for sea surface observations using a GPS buoy. Advances in Space Research, 51(8), 13111322.Google Scholar
Ge, M., Gendt, G., Rothacher, M., Shi, C. and Liu, J. (2008). Resolution of GPS carrier-phase ambiguities in precise point positioning (PPP) with daily observations. Journal of Geodesy, 82(7), 389399.Google Scholar
Geng, J. and Bock, Y. (2014). Triple-frequency GPS precise point positioning with rapid ambiguity resolution. Journal of Geodesy, 88(1), 9597.Google Scholar
Geng, J., Teferle, F. N., Meng, X. and Dodson, A. H. (2010). Kinematic precise point positioning at remote marine platforms. GPS Solutions, 14(4), 343350.Google Scholar
Guo, F., Zhang, X., Wang, J. and Ren, X. (2016). Modeling and assessment of triple-frequency BDS precise point positioning. Journal of Geodesy, 90(11), 113.Google Scholar
Hauschild, A. and Montenbruck, O. (2009). Kalman-filter-based GPS clock estimation for near real-time positioning.GPS Solutions, 13(3), 173182.Google Scholar
Heßelbarth, A. and Wanninger, L. (2013). SBAS orbit and satellite clock corrections for precise point positioning. GPS Solutions, 17(4), 465473.Google Scholar
IMO. (2004). International Maritime Organization (IMO) Resolution A.953(23) Revised World-Wide Radio navigation System. Adopted on February 26th, 2004, London.Google Scholar
Jin, S. and Park, P.H. (2006). Strain accumulation in South Korea inferred from GPS measurements. Earth Planets Space, 58(5), 529534.Google Scholar
Jin, S., Qian, X. and Wu X. (2017). Sea level change from BeiDou Navigation Satellite System-Reflectometry (BDS-R): First results and evaluation, Global and Planetary Change, 149, 2025.Google Scholar
Jin, S., Wang, J. and Park, P. H. (2005). An improvement of GPS height estimates: Stochastic modeling, Earth Planets Space, 57(4), 253259, doi:10.1186/BF03352561.Google Scholar
Jokinen, A., Feng, S., Milner, C., Schuster, W., Ochieng, W., Hide, C., Moore, T. and Hill, C. (2011). Precise Point Positioning and Integrity Monitoring with GPS and GLONASS. European Navigation Conference. London, United Kingdom, January 2011.Google Scholar
Kouba, J. (2009). A guide to using International GNSS Service (IGS) products. https://igscb.jpl.nasa.gov/igscb/resource/pubs/UsingIGSProductsVer21.pdf.Google Scholar
Kouba, J. and Héroux, P. (2001). Precise point positioning using IGS orbit and clock products. GPS Solutions, 5(2), 1228; doi:10.1007/PL00012883.Google Scholar
Laurichesse, D. and Mercier, F. (2007). Integer ambiguity resolution on undifferenced GPS phase measurements and its application to PPP. Proceedings of International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2007), Fort Worth, TX, September 2007, 839848.Google Scholar
Li, L., Jia, C., Zhao, L., Cheng, J., Liu, J. and Ding, J. (2016). Real-time single frequency precise point positioning using SBAS corrections. Sensors, 16(8), 1261.Google Scholar
Li, P. and Zhang, X. (2014). Integrating GPS and GLONASS to accelerate convergence and initialization times of precise point positioning. GPS Solutions, 18(3), 461471Google Scholar
Li, X., Ge, M., Dai, X., Ren, X., Fritsche, M. and Wickert, J. (2015). Accuracy and reliability of multi-GNSS real-time precise positioning: GPS, GLONASS, BeiDou, and GALILEO. Journal of Geodesy, 89(6), 607635.Google Scholar
Lou, Y., Zheng, F., Gu, S., Wang, C., Guo, H. and Feng, Y. (2016). Multi-GNSS precise point positioning with raw single-frequency and dual-frequency measurement models.GPS Solutions, 20(4), 114.Google Scholar
Lu, C., Li, X., Zus, F., Heinkelmann, R., Dick, G., Ge, M., Wickert, J. and Schuh, H. (2017). Improving beidou real-time precise point positioning with numerical weather models. Journal of Geodesy, 91(9), 10191029.Google Scholar
Pan, L., Cai, C., Santerre, R. and Zhang, X. (2017a). Performance evaluation of single-frequency point positioning with GPS, GLONASS, BeiDou and GALILEO.Journal of Navigation, 70(3), 465482.Google Scholar
Pan, L., Li, X., Zhang, X., Li, X., Lu, C., Zhao, Q. and Liu, J. (2017c). Considering inter-frequency clock bias for BDS triple-frequency precise point positioning. Remote Sensing, 9(7), 734.Google Scholar
Pan, L., Zhang, X., Li, X., Liu, J. and Li, X. (2017b). Characteristics of inter-frequency clock bias for block IIF satellites and its effect on triple-frequency GPS precise point positioning. GPS Solutions, 21(2), 811822.Google Scholar
Park, S. G. and Cho, D. J. (2012). Precise positioning using stand-alone GPS for maritime application. In: Oceans IEEE, Yeosu, South Korea, May 2012, 16.Google Scholar
Petit, G. and Luzum, B. (2010). IERS Conventions 2010 (IERS Technical Note No. 36). Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main, 179. ISBN:3-89888-989-6.Google Scholar
Rizos, C., Montenbruck, O., Weber, R., Neilan, R. and Hugentobler, U. (2013). The IGS MGEX Experiment as a milestone for a comprehensive multi-GNSS service. Proceedings of the ION 2013 Pacific PNT Meeting, Honolulu, Hawaii, USA, 22–25 April, 2013, 289295.Google Scholar
RTCM STANDARD 10403.2. (2013). Differential GNSS Global Navigation Satellite Systems Services-version 3. Developed by RTCM special committee NO. 104. Feb. 1, 2013.Google Scholar
Saastamoinen, J. (1972). Contributions to the theory of atmospheric refraction. Bulletin Géodésique, 107(1), 1334.Google Scholar
Seepersad, G. and Bisnath, S. (2015). Reduction of PPP convergence period through pseudorange multipath and noise mitigation. GPS Solutions, 19(3):369379.Google Scholar
Shi, J. (2012). Precise Point Positioning integer ambiguity resolution with decoupled clocks. Ph.D., University of CalgaryGoogle Scholar
Shi, J., Xu, C., Guo, J. and Gao, Y. (2014). Local troposphere augmentation for real-time precise point positioning. Earth Planets Space, 66(30). doi:10.1186/1880-5981-66-30Google Scholar
Shi, J., Yuan, X., Cai, Y. and Wang, G. (2017). GPS real-time precise point positioning for aerial triangulation. GPS Solutions, 21(2), 405414.Google Scholar
Wang, L., Li, Z., Ge, M., Neitzel, F., Wang, Z. and Yuan, H. (2018). Validation and Assessment of Multi-GNSS Real-Time Precise Point Positioning in Simulated Kinematic Mode Using IGS Real-Time Service. Remote Sensing, 10(2), 337, doi:10.3390/rs10020337Google Scholar
Wanninger, L. and Beer, S. (2015). Beidou satellite-induced code pseudorange variations: diagnosis and therapy. GPS Solutions, 19(4), 639648.Google Scholar
Watson, C. S. (2005). Satellite altimeter calibration and validation using GPS buoy technology. Dissertation. University of Tasmania.Google Scholar
Wu, J. T., Wu, S. C., Hajj, G. A., Bertiger, W. I. and Lichten, S. M. (1992). Effects of antenna orientation on GPS carrier phase. Astrodynamics, 18, 16471660.Google Scholar
Yang, Y., He, H. and Xu, G. (2001). Adaptively robust filtering for kinematic geodetic positioning. Journal of Geodesy, 75(2–3), 109116.Google Scholar
Zhang, X., Guo, F., Li, P. and Zuo, X. (2012). Real-time quality control procedure for GNSS precise point positioning. Geomatics and Information Science of Wuhan University, 37(8), 940944.Google Scholar
Zumberge, J. F., Heflin, M. B., Jefferson, D. C., Watkins, M. M. and Webb, F. H. (1997). Precise point positioning for the efficient and robust analysis of GPS data from large networks. Journal of Geophysical Research Solid Earth, 102, 50055017.Google Scholar