Hostname: page-component-669899f699-7xsfk Total loading time: 0 Render date: 2025-04-27T00:58:26.092Z Has data issue: false hasContentIssue false

Integrated orbit determination and time synchronization using inter-satellite observations for BDS-3 satellites with satellite clock drifts estimated simultaneously

Published online by Cambridge University Press:  25 October 2024

Rengui Ruan*
Affiliation:
Xi'an Research Institute of Surveying and Mapping, Xi'an 710054, China State Key Laboratory of Geo-Information Engineering, Xi'an 710054, China
*
*Corresponding author: Rengui Ruan; Email: [email protected]

Abstract

By simultaneously estimating satellite clock drifts (SCDs) as either constant parameters or piece-wise parameters, we present an improved integrated orbit determination and time synchronization approach for BDS-3 satellites with raw inter-satellite link (ISL) observations. Experiments with L-band data from seven monitoring stations in China and ISL data from eight satellites of the third-generation Beidou Navigation Satellite System (BDS-3) were carried out and the two SCD estimation strategies are validated. It is demonstrated that, with SCDs estimated, the quality of orbits and clock offsets is comparable to those with SCDs corrected using predicted values. The accuracy of the estimated orbits and clocks are up to 0.019 m (radial) and 0.095 ns, respectively, with improvements of 95% and 90%, when compared with the results using the L-band data alone. It is also demonstrated that estimating SCDs time slice by time slice is slightly worse in accuracy but superior in coping with possible frequency jump of satellite clocks.

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of The Royal Institute of Navigation

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Ananda, M. P., Bernstein, H., Cunningham, K. E. and Feess, W. A. (1990). Stroud EG Global Positioning System (GPS) Autonomous Navigation. In: IEEE Position Location and Navigation Symposium, pp. 497–508. doi:10.1109/PLANS.1990.66220CrossRefGoogle Scholar
Beohm, J., Neill, A., Tregoning, P. and Schuh, H. (2006). Global mapping function (GMF): A new empirical mapping function based on numerical weather model data. Geophysical Research Letters, 33(7), L07304.Google Scholar
Codik, A. (1985). Autonomous navigation of GPS satellites: A challenge for the future. Navigation, 32(3), 221232.CrossRefGoogle Scholar
Collins, P., Bisnath, S., Lahaye, F. and Heroux, P. (2010). Undifferenced GPS ambiguity resolution using the decoupled clock model and ambiguity datum fixing. Navigation: Journal of the Insititute of Navigation, 57(2), 123135.CrossRefGoogle Scholar
De Jonge, P. J. (1998). A Processing Strategy for the Application of The GPS in Networks. Delft University of Technology, Delft, The Netherlands.CrossRefGoogle Scholar
Ge, M., Chen, J., Dousa, J., Gendt, G. and Wickert, J. (2012). A computationally efficient approach for estimating high-rate satellite clock corrections in realtime. GPS Solutions, 16(1), 917.CrossRefGoogle Scholar
Jiao, W. (2014) International GNSS Monitoring and Assessment System (iGMAS) and Latest Progress. In: China Satellite Navigation Conference (CSNC). Nanjing, China.Google Scholar
Kleusberg, A. and Teunissen, P. J. G. (eds) (1996). GPS for Geodesy. Lecture Notes in Earth Sciences. Berlin, Germany: Springer-Verlag.Google Scholar
McCarthy, D. D. and Petit, G. (2004). IERS Conventions (2003). International Earth Rotation And Reference Systems Service (IERS).Google Scholar
Pan, J., et al. (2018). Time synchronization of new-generation BDS satellites using inter-satellite link measurements. Advances in Space Research, 61(1), 145153. doi:10.1016/j.asr.2017.10.004CrossRefGoogle Scholar
Ren, X., Yang, Y. and Zhu, J. (2017). Orbit determination of the next-generation BeiDou satellites with inter-satellite link measurements and a priori orbit constraints. Advances in Space Research, 60(10), 21552165. doi:10.1016/j.asr.2017.08.024CrossRefGoogle Scholar
Ren, X., Yang, Y., Zhu, J. and Xu, T. (2019). Comparing satellite orbit determination by batch processing and extended Kalman filtering using inter-satellite link measurements of the next-generation BeiDou satellites. GPS Solutions, 23(1), 112. doi:10.1007/s10291-018-0816-9CrossRefGoogle Scholar
Ruan, R. (2018). Research on Key Technologies of Precise Data Processing for GNSS Networks. Information Engineering University, ZhengZhou, China.Google Scholar
Ruan, R., Jia, X., Wu, X., Feng, L. and Zhu, Y. (2014). SPODS Software and Its Result of Precise Orbit Determination for GNSS Satellites. In: China Satellite Navigation Conference (CSNC) 2014 Proceedings: Volume III, Nanjing, 2014. Berlin, Heidelberg: Springer, pp. 301–312.CrossRefGoogle Scholar
Ruan, R., Jia, X., Feng, L., Zhu, J., Huyan, Z., Li, J. and We, Z. (2020). Orbit determination and time synchronization for BDS-3 satellites with raw inter-satellite link ranging observations. Satellite Navigation, 1(1), 112. doi:10.1186/s43020-020-0008-yCrossRefGoogle Scholar
Schmid, R., Dach, R., Collilieux, X., Jäggi, A., Schmitz, M. and Dilssner, F. (2016). Absolute IGS antenna phase center model igs08.atx: Status and potential improvements. Journal of Geodesy, 90(4), 343364. doi:10.1007/s00190-015-0876-3CrossRefGoogle Scholar
Springer, T. A. (1999). Modeling and Validating Orbits and Clocks Using the Global Positioning System. Astronomical Institute, University of Bern, Bern, Switzerland.Google Scholar
Tang, C., Hu, X., Zhou, S. and Liu, L. (2018). Initial results of centralized autonomous orbit determination of the new-generation BDS satellites with inter-satellite link measurements. Journal of Geodesy, 92(10), 11551169.CrossRefGoogle Scholar
Tang, C., et al. (2017). Centralized autonomous orbit determination of Beidou navigation satellites with inter-satellite link measurements:Preliminary results. Scientia Sinica Physica, Mechanica & Astronomica, 47(2), 0299501. (in Chinese).CrossRefGoogle Scholar
Wang, C., Zhao, Q., Guo, J., Liu, J. and Chen, G. (2019). The contribution of intersatellite links to BDS-3 orbit determination: Model refinement and comparisons. NAVIGATION, Journal of the Institute of Navigation, 66(1), 7178.CrossRefGoogle Scholar
Wu, J. T., Wu, S. C., Hajj, G. A., Bertiger, W. I. and Lichten, S. M. (1992). Effects of antenna orientation on GPS carrier phase. Astrodynamics, 1991, 16471660.Google Scholar
Xie, X., Geng, T., Zhao, Q., Cai, H., Zhang, F., Wang, X. and Meng, Y. (2019). Precise orbit determination for BDS-3 satellite using satellite-ground and inter-satellite link observations. GPS Solutions, 23(2), 112. doi:10.1007/s10291-019-0823-5CrossRefGoogle Scholar
Xie, X., Geng, T., Zhao, Q., Lv, Y., Cai, H. and Liu, J. (2020). Orbit and clock analysis of BDS-3 satellites using inter-satellite link observations. Journal of Geodesy, 94(7), 118. doi:10.1007/s00190-020-01394-4CrossRefGoogle Scholar
Yang, D., Yang, J., Li, G., Zhou, Y. and Tang, C. (2017). Globalization highlight: Orbit determination using BeiDou inter-satellite ranging measurements. GPS Solutions, 21(3), 13951404. doi:10.1007/s10291-017-0626-5CrossRefGoogle Scholar
Yang, Y., Xu, Y., Li, J. and Yang, C. (2018). Progress and performance evaluation of BeiDou global navigation satellite system: Data analysis based on BDS-3 demonstration system. Sci China Earth Sci, 61(5), 614624.CrossRefGoogle Scholar
Yang, Y., Gao, W., Guo, S., Mao, Y. and Yang, Y. (2019). Intorduction to BeiDou-3 navigation satellite system. NAVIGATION. Journal of the Institute of Navigation, 66(1), 718.CrossRefGoogle Scholar
Yang, Y., et al. (2020). Inter-Satellite link enchanced orbit determination for BeiDou-3. The Journal of Navigation, 73(1), 115130. doi:10.1017/S0373463319000523CrossRefGoogle Scholar