Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-23T20:55:53.930Z Has data issue: false hasContentIssue false

Galileo Signal and Positioning Performance Analysis Based on Four IOV Satellites

Published online by Cambridge University Press:  29 April 2014

Changsheng Cai
Affiliation:
(School of Geosciences and Info-Physics, Central South University, Changsha, China)
Xiaomin Luo
Affiliation:
(School of Geosciences and Info-Physics, Central South University, Changsha, China)
Zhizhao Liu*
Affiliation:
(Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hong Kong, China)
Qinqin Xiao
Affiliation:
(School of Municipal and Surveying Engineering, Hunan City University, Yiyang, China)
*

Abstract

With the availability of Galileo signals from four in-orbit validation (IOV) satellites, positioning with Galileo-only observations has become possible, which allows us to assess its positioning performance. The performance of the Galileo system is evaluated in respect of carrier-to-noise density ratio (C/N0), pseudorange multipath (including noise), Galileo broadcast satellite orbit and satellite clock errors, and single point positioning (SPP) accuracy in Galileo-only mode as well as in GPS/Galileo combined mode. The precision of the broadcast ephemeris data is assessed using the precise satellite orbit and clock products from the Institute of Astronomical and Physical Geodesy of the Technische Universität München (IAPG/TUM) as references. The GPS-Galileo time offset (GGTO) is estimated using datasets from different types of GNSS receivers and the results indicate that a systematic bias exists between different receiver types. Positioning solutions indicate that Galileo-only SPP can achieve a three-dimensional position accuracy of about six metres. The integration of Galileo and GPS data can improve the positioning accuracies by about 10% in the vertical components compared with GPS-only solutions.

Type
Research Article
Copyright
Copyright © The Royal Institute of Navigation 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Cai, C. and Gao, Y. (2008). Estimation of GPS-GLONASS system time difference with application to PPP. Proceedings of ION GNSS 2008, 16–19 Sep 2008, Savannah, Georgia, USA, 28802887.Google Scholar
Cao, W., Hauschild, A. and Steigenberger, P. (2010). Performance evaluation of integrated GPS/GIOVE precise point positioning. Proceedings of ION ITM 2010, 25–27 Jan 2010, San Diego, California, USA, 540552.Google Scholar
Diessongo, H.T., Schüler, T. and Junker, S. (2013). Precise position determination using a Galileo E5 single-frequency receiver. GPS Solutions, 18(1), 7383, doi: 10.1007/s10291-013-0311-2.Google Scholar
Dow, J.M., Neilan, R.E. and Rizos, C. (2009). The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. Journal of Geodesy, 83(3–4), 191198, doi: 10.1007/s00190-008-0300-3.Google Scholar
Estey, L.H. and Meertens, C.M. (1999). TEQC: the multi-purpose toolkit for GPS/GLONASS data. GPS Solutions, 3(1), 4249, doi:10.1007/PL00012778.Google Scholar
Gao, Y. (2004). P3 user manual (version 1.0), University of Calgary, Canada. <http://people.ucalgary.ca/∼ygao/images/P3%20manual.pdf>. Last access on 16 Dec 2013..+Last+access+on+16+Dec+2013.>Google Scholar
Gendt, G., Altamimi, Z., Dach, R., Söhne, W. and Springer, T. (2011). GGSP: realisation and maintenance of the Galileo terrestrial reference frame. Advances in Space Research, 47(2), 174185, doi: 10.1016/j.asr.2010.02.001.CrossRefGoogle Scholar
Gerdan, G.P. (1995). A comparison of four methods of weighting double difference pseudorange measurements. The Australian Surveyor, 40(4), 6066, doi: 10.1080/00050334.1995.10558564.Google Scholar
Hackel, S., Steigenberger, P., Hugentobler, U., Uhlemann, M. and Montenbruck, O. (2014). Galileo orbit determination using combined GNSS and SLR observations. GPS Solutions, doi: 10.1007/s10291-013-0361-5.Google Scholar
IS-GPS-200F (2011). Global positioning system directorate systems engineering and integration interface specification, 21 Sep 2011.Google Scholar
Klobuchar, J.A. (1987). Ionospheric time-delay algorithm for single-frequency GPS users. IEEE Transactions on Aerospace and Electronic System, 23(3), 325331, doi: 10.1109/TAES.1987.310829.Google Scholar
Langley, R.B., Banville, S. and Steigenberger, P. (2012). First results: precise positioning with Galileo prototype satellites. GPS World, Sep 2012, 23(9), 4549.Google Scholar
Le, A.Q. (2004). Achieving decimetre accuracy with single frequency standalone GPS positioning. Proceedings of ION GNSS 2004, 21–24 Sep 2004, Long Beach, California, USA, 18811892.Google Scholar
Montenbruck, O., Rizos, C., Weber, R., Weber, G., Neilan, R. and Hugentobler, U. (2013). Getting a Grip on Multi-GNSS. GPS World, July 2013, 4449.Google Scholar
Moudrak, A., Konovaltsev, A., Furthner, J., Hornbostel, A. and Hammesfahr, J. (2004). GPS Galileo time offset: how it affects positioning accuracy and how to cope with it. Proceedings of ION GNSS 2004, 21–24 Sep 2004, Long Beach, California, USA, 660669.Google Scholar
Nava, B., Coïsson, P. and Radicella, S.M. (2008). A new version of the NeQuick ionosphere electron density model. Journal of Atmospheric and Solar-Terrestrial Physics, 70(15), 18561862. doi:10.1016/j.jastp.2008.01.015.Google Scholar
Ochieng, W.Y., Sauer, K., Cross, P.A., Sheridan, K.F., Iliffe, J., Lannelongue, S., Ammour, N. and Petit, K. (2001). Potential performance levels of a combined Galileo/GPS navigation system. Journal of Navigation, 54(2), 185197, doi: 10.1017/S037346330100131X.Google Scholar
Odijk, D., Teunissen, P.J.G. and Huisman, L. (2012). First results of mixed GPS+GIOVE single-frequency RTK in Australia. Journal of Spatial Science, 57(1), 318, doi: 10.1080/14498596.2012.679247.CrossRefGoogle Scholar
O'Keefe, K., Julien, O., Cannon, M.E. and Lachapelle, G. (2006). Availability, accuracy, reliability, and carrier-phase ambiguity resolution with Galileo and GPS. Acta Astronautica, 58(8), 422434, doi:10.1016/j.actaastro.2005.12.008.Google Scholar
OS-SIS-ICD (2010). European GNSS (Galileo) open service signal in space interface control document, Issue 1·1, European Union.Google Scholar
Saastamoinen, J. (1972). Contribution to the theory of atmospheric refraction. Bulletin Géodésique, 105(1), 279298, doi: 10.1007/BF02521844.Google Scholar
Steigenberger, P., Hugentobler, U. and Montenbruck, O. (2013). First Demonstration of Galileo-Only Positioning. GPS World, Jan 2013, 24(2), 1415.Google Scholar
Tawk, Y., Botteron, C., Jovanovic, A. and Farine, P. (2012). Analysis of Galileo E5 and E5ab code tracking. GPS Solutions, 16(2), 243258, doi: 10.1007/s10291-011-0226-8.CrossRefGoogle Scholar
Warren, D.L.M. and Raquet, J.F. (2003). Broadcast vs. precise GPS ephemerides: a historical perspective. GPS Solutions, 7(3), 151156, doi: 10.1007/s10291-003-0065-3.Google Scholar