Published online by Cambridge University Press: 05 February 2018
In the Venus capture period, it is difficult for celestial autonomous navigation to satisfy the requirement of high precision. To improve autonomous navigation performance, a Direction, Distance and Velocity (DDV) measurements deeply integrated navigation method is proposed. The “deeply” integrated navigation reflects the fact that the direction and velocity measurements suppress the Doppler effects in the pulsar signals. In the pulsar observation period, the direction and velocity measurements are utilised to compensate for Doppler effects in the pulsar signals. By these means, the residual effects can be ignored. When the direction, distance or velocity measurements are obtained, they are fused to improve the navigation performance. Simulation results demonstrate that the DDV measurements deeply integrated navigation filter converges very well, and provides highly accurate position estimation without a high quality requirement on navigation sensors.