Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-12-03T20:56:54.223Z Has data issue: false hasContentIssue false

A Cryogenic Nuclear Magnetic Resonance Gyroscope

Published online by Cambridge University Press:  23 November 2009

Susan P. Potts
Affiliation:
(Admiralty Surface Weapons Establishment)
John Preston
Affiliation:
(Admiralty Surface Weapons Establishment)

Extract

Any device having a property which varies as a result of its being rotated in space can, in principle, be used as the primary sensor of an inertial navigation system. A wide range of devices and properties has received attention with this aim in view. The spinning-wheel gyroscope has, to date, proved the most fruitful but a number of ‘exotic’ types of gyro show promise. The discovery that the atomic nucleus can, under certain conditions, behave like a spinning mass gave birth to ideas of a nuclear gyro of some sort. The further discovery that some nuclei possess magnetic properties opened the way to nuclear magnetic resonance and offered a method of communicating with the minute spinning masses.

Type
Research Article
Copyright
Copyright © The Royal Institute of Navigation 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Greenwood, I. A. (1979). US Patent 4, 174, 974.Google Scholar
2Kanegsberg, E. (1978). Proc. Soc. Photo-Optical Inst. Eng. 157, 73.Google Scholar
3Rawlings, A. L. (1929). The Theory of the Gyrocompass. Macmillan.Google Scholar
4Wrigley, W. (1977). This Journal, 30, 61.Google Scholar
5Savet, P. (ed.) (1961). Gyroscopes: Theory and Design. McGraw Hill.Google Scholar
6Patterson, A. G. J. (1968). Lubrication Tech. 90, 741.Google Scholar
7Darwin, G. E. and Buddery, J. H. (1960). Beryllium. Butterworth.Google Scholar
8Smith, S. G. (1979). This Journal, 32, 91.Google Scholar
9Christensen, T. W. (1966). IEEE Trans, on Aerospace and Electronic Systems. AES 2, 2.Google Scholar
10Burdess, J. S. and Fox, C. H. J. (1978). J. Mech. Engng Sci. 20, 255.CrossRefGoogle Scholar
11Puls, J. (1971). German Air and Space Travel Report 71.Google Scholar
12Nisbet, D. B. and Scott, J. N. G. (1979). This Journal, 32, 109.Google Scholar
13Vali, V., Shorthill, R. W. and Berg, M. F. (1977). Appl. Opt. 16, 2605.CrossRefGoogle Scholar
14Galas, D. J. (1973). J. Appl. Phys. 44, 2355.CrossRefGoogle Scholar
15Everitt, C. W. F. (1978). Proc. Soc. Photo-Optical Inst. Eng. 157, 175.Google Scholar
16Born, M. (1935). Atomic Physics. Blackie.Google Scholar
17White, H. E. (1934). Introduction to Atomic Spectra. McGraw-Hill.Google Scholar
18Gorter, C. J. (1936). Physica, 3, 995.CrossRefGoogle Scholar
19Bloch, F., Hansen, W. W. and Packard, M. E. (1946). Phys. Rev. 70, 474.CrossRefGoogle Scholar
20Bloembergen, E., Purcell, R. M. and Pound, R. V. (1948). Phys. Rev. 73, 679.CrossRefGoogle Scholar
21Andrew, E. R. (1969). Nuclear Magnetic Resonance. Cambridge.Google Scholar
22Farrar, T. C. and Becker, E. D. (1971). Pulse and Fourier Transform NMR.Google Scholar
23Tinkham, M. (1975). Introduction to Superconductivity. McGraw-Hill.Google Scholar
24Meissner, W. and Ochsenfeld, R. (1933). Naturwissenschaften 21, 787.CrossRefGoogle Scholar
25Gallop, J. C. (1978). J. Phys. B, 11, L93.CrossRefGoogle Scholar
26Cooper, L. N. (1956). Phys. Rev. 104, 1189.CrossRefGoogle Scholar
27Bardeen, J., Cooper, L. N. and Schrieffer, J. R. (1957). Phys. Rev. 108, 1175.CrossRefGoogle Scholar
28Deaver, B. S. and Fairbank, W. M. (1961). Phys. Rev., Letters, 7, 43.CrossRefGoogle Scholar
29Josephson, B. D. (1962). Phys. Letters, 1, 251. (1965). Adv. Phys. 14, 419.CrossRefGoogle Scholar
30Giffard, R. P., Gallop, J. C. and Petley, B. W. (1976). Prog. Quantum Electron. 4, 301.CrossRefGoogle Scholar
31Clarke, J. (1977). Superconductor Applications: SQUIDS and Machines, chap. 3. Plenum.Google Scholar
32Anacker, W. (1979). IEEE Spectrum, 26.CrossRefGoogle Scholar
33Schwartz, B. B. and Foner, S. (ed.) (1977). Superconductor Applications: SQUIDS and Machines. Plenum.CrossRefGoogle Scholar
34Clarke, J., Goubau, W. M. and Ketchen, M. B. (1976). J Low Temp. Phys. 25, 99.CrossRefGoogle Scholar
35Giffard, R. P. (1978). Am. Inst. P. Conf. Proc. 44, 11.Google Scholar
36Silver, A. H. and Zimmerman, J. E. (1967). Phys. Rev., 157, 317.CrossRefGoogle Scholar
37Clarke, J. (1973). Proc. IEEE., 61, 8.CrossRefGoogle Scholar
38Long, A., Clark, T. D., Prance, R. J. and Richards, M. G. (1979). Rev. Sci. Inst. 50, 1376.CrossRefGoogle Scholar
39Gallop, J. C. and Redcliffe, W. J. (1978). J. Phys. D 11, L203. Gallop, J. C. and Potts, S. P. (1978). UK Patent Application 41966.CrossRefGoogle Scholar
40Morris, D. (1978). IEEE Trans, on Inst and Meas., I.M27, 339.CrossRefGoogle Scholar
41Stein, S. R. and Turneaure, J. P. (1978). Am. Inst. P. Conf. Proc., 44, 192.Google Scholar
42Dinger, R. J., Davis, J. R. and Nisenoff, M. (1976). NRL Memo Report, 3256.Google Scholar
43Deaver, B. S. et al. , (ed.) (1978). Future trends in superconductive electronics. Am. Inst. P. Conf. Proc. no. 44.Google Scholar
44Zimmerman, J. E. (1978). Am. Inst. P. Conf. Proc. no. 44, p. 412.Google Scholar