Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-23T09:47:46.982Z Has data issue: false hasContentIssue false

A bionic point-source polarisation sensor applied to underwater orientation

Published online by Cambridge University Press:  04 May 2021

Teng Zhang
Affiliation:
School of Automation Science and Electrical Engineering, Beihang University, Beijing, China.
Jian Yang*
Affiliation:
School of Automation Science and Electrical Engineering, Beihang University, Beijing, China. Beijing Advanced Innovation Centre for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing, China. Hangzhou Innovation Institute, Beihang University, Hangzhou, China.
Lei Guo
Affiliation:
School of Automation Science and Electrical Engineering, Beihang University, Beijing, China. Beijing Advanced Innovation Centre for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing, China. Hangzhou Innovation Institute, Beihang University, Hangzhou, China.
Pengwei Hu
Affiliation:
School of Automation Science and Electrical Engineering, Beihang University, Beijing, China.
Xin Liu
Affiliation:
School of Automation Science and Electrical Engineering, Beihang University, Beijing, China.
Panpan Huang
Affiliation:
Hangzhou Innovation Institute, Beihang University, Hangzhou, China.
Chenliang Wang
Affiliation:
School of Automation Science and Electrical Engineering, Beihang University, Beijing, China. Beijing Advanced Innovation Centre for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing, China. Key Laboratory of Big Data-Based Precision Medicine, Ministry of Industry and Information Technology, Beihang University, Beijing, China
*
*Corresponding author. E-mail: [email protected]

Abstract

With the characteristics of full autonomy and no accumulated errors, polarisation navigation shows tremendous prospects in underwater scenarios. In this paper, inspired by the polarisation vision of aquatic organisms, a novel point-source polarisation sensor with high spectral adaptability (400 nm–760 nm) is designed for underwater orientation. To enhance the environmental applicability of the underwater polarisation sensor, a novel sensor model based on the underwater light intensity attenuation coefficient and optical coupling coefficient is established. In addition, concerned with the influence of light intensity uncertainty on sensor performance underwater, an antagonistic polarisation algorithm is adopted for the first time, to improve the accuracy of angle of polarisation and degree of polarisation in the low signal-to-noise ratio environment underwater. Finally, indoor and outdoor experiments are carried out to evaluate the performance of the designed polarisation sensor. The results show that the designed point-source polarisation sensor can acquire polarised light and be used for heading determination underwater.

Type
Research Article
Copyright
Copyright © The Royal Institute of Navigation 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Caruso, M. J. (2000). Applications of Magnetic Sensors for Low Cost Compass Systems. IEEE 2000. Position Location and Navigation Symposium (Cat. No.00CH37062), San Diego, CA.CrossRefGoogle Scholar
Chahl, J. and Mizutani, A. (2012). Biomimetic attitude and orientation sensors. IEEE Sensors Journal, 12, 289297.CrossRefGoogle Scholar
Cheng, H. Y., Chu, J. K., Zhang, R., Tian, L. B. and Gui, X. Y. (2019). Underwater polarisation patterns considering single rayleigh scattering of water molecules. International Journal of Remote Sensing, 41, 49474962.CrossRefGoogle Scholar
Cronin, T. W. and Shashar, N. (2001). The linearly polarized light field in clear, tropical marine waters: Spatial and temporal variation of light intensity, degree of polarization and E-vector angle. Journal of Experimental Biology, 204, 24612467.CrossRefGoogle ScholarPubMed
Dupeyroux, J., Diperi, J., Boyron, M., Viollet, S. and Serres, J. (2017). A Novel Insect-Inspired Optical Compass Sensor for a Hexapod Walking Robot. 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, Canada.CrossRefGoogle Scholar
Dupeyroux, J., Serres, J. R. and Viollet, S. (2019a). Antbot: A six-legged walking robot able to home like desert ants in outdoor environments. Science Robotics, 4, eaau0307.CrossRefGoogle Scholar
Dupeyroux, J., Viollet, S. and Serres, J. R. (2019b). An ant-inspired celestial compass applied to autonomous outdoor robot navigation. Robotics and Autonomous Systems, 117, 4056.CrossRefGoogle Scholar
Emami, M. and Taban, M. R. (2018). A low complexity integrated navigation system for underwater vehicles. The Journal of Navigation, 71, 11611177.CrossRefGoogle Scholar
Fan, C., Hu, X. P., Lian, J. X., Zhang, L. L. and He, X. F. (2016). Design and calibration of a novel camera-based bio-inspired polarization navigation sensor. IEEE Sensors Journal, 16, 36403648.CrossRefGoogle Scholar
Giorgi, G., Teunissen, P. J. G., Verhagen, S. and Buist, P. J. (2010). Testing a new multivariate GNSS carrier phase attitude determination method for remote sensing platforms. Advances in Space Research, 46, 118129.CrossRefGoogle Scholar
Heinze, S. and Homberg, U. (2007). Maplike representation of celestial E-vector orientations in the brain of an insect. Science, 315, 995997.CrossRefGoogle ScholarPubMed
How, M. J., Porter, M. L., Radford, A. N., Feller, K. D., Temple, S. E., Caldwell, R. L., Marshall, N. J., Cronin, T. W. and Roberts, N. W. (2014). Out of the blue: The evolution of horizontally polarized signals in haptosquilla (Crustacea, Stomatopoda, Protosquillidae). Journal of Experimental Biology, 217, 34253431.Google Scholar
Huang, Y., Wu, L. and Li, D. (2015). Theoretical research on full attitude determination using geomagnetic gradient tensor. The Journal of Navigation, 68, 951961.CrossRefGoogle Scholar
Huang, Y. L., Zhang, Y. G. and Zhao, Y. X. (2019). Review of autonomous undersea vehicle navigation methods. Journal of Unmanned Undersea Systems, 27, 232253.Google Scholar
Kirk, J. T. O. (1983). Light and Photosynthesis in Aquatic Ecosystems. Cambridge: Cambridge University Press.Google Scholar
Kleinlogel, S. and Marshall, N. J. (2006). Electrophysiological evidence for linear polarization sensitivity in the compound eyes of the stomatopod crustacean Gonodactylus chiragra. Journal of Experimental Biology, 209, 42624272.CrossRefGoogle ScholarPubMed
Kleinlogel, S., Marshall, N. J., Horwood, J. M. and Land, M. F. (2003). Neuroarchitecture of the color and polarization vision system of the stomatopod haptosquilla. Journal of Comparative Neurology, 467, 326342.CrossRefGoogle ScholarPubMed
Lambrinos, D., Kobayashi, H., Pfeifer, R., Maris, M., Labhart, T. and Wehner, R. (1997). An autonomous agent navigating with a polarized light compass. Adaptive Behavior, 6, 131161.CrossRefGoogle Scholar
Lerner, A., Sabbah, S., Erlick, C. and Shashar, N. (2011). Navigation by light polarization in clear and turbid waters. Philosophical Transactions of the Royal Society B-Biological Sciences, 366, 671679.CrossRefGoogle ScholarPubMed
Ma, T., Li, Y., Gong, Y. S., Wang, R. P., Sheng, M. W. and Zhang, Q. (2019). AUV bathymetric simultaneous localisation and mapping using graph method. The Journal of Navigation, 72, 16021622.CrossRefGoogle Scholar
Miller, P. A., Farrell, J. A., Zhao, Y. and Djapic, V. (2010). Autonomous underwater vehicle navigation. IEEE Journal of Oceanic Engineering, 35, 663678.CrossRefGoogle Scholar
Müller, M. and Wehner, R. (1988). Path integration in desert ants, Cataglyphis fortis. Proceedings of the National Academy of Sciences of the United, 85, 52875290.CrossRefGoogle ScholarPubMed
Paull, L., Saeedi, S., Seto, M. and Li, H. (2014). AUV navigation and localization: A review. IEEE Journal of Oceanic Engineering, 39, 131149.CrossRefGoogle Scholar
Powell, S. B., Garnett, R., Marshall, J., Risk, C. and Gruev, V. (2018). Bioinspired polarization vision enables underwater geolocalization. Science Advances, 4, eaao6841.CrossRefGoogle ScholarPubMed
Sabbah, S. and Shashar, N. (2007). Light polarization under water near sunrise. Journal of the Optical Society of America A. Optics Image Science and Vision, 24, 20492056.CrossRefGoogle ScholarPubMed
Sabbah, S., Barta, A., Gál, J., Horváth, G. and Shashar, N. (2006). Experimental and theoretical study of skylight polarization transmitted through Snell's window of a flat water surface. Journal of the Optical Society of America A. Optics Image Science & Vision, 23, 19781988.CrossRefGoogle ScholarPubMed
Stutters, L., Liu, H., Tiltman, C. and Brown, D. J. (2008). Navigation technologies for autonomous underwater vehicles. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 38, 581589.CrossRefGoogle Scholar
Thoen, H. H., How, M. J., Chiou, T. H. and Marshall, J. (2014). A different form of color vision in mantis shrimp. Science, 343, 411413.CrossRefGoogle ScholarPubMed
Thoen, H. H., Chiou, T. H. and Marshall, N. J. (2017). Intracellular recordings of spectral sensitivities in stomatopods: A comparison across species. Integrative and Comparative Biology, 57, 11171129.CrossRefGoogle ScholarPubMed
Wang, Q. J., Li, Y. and Niu, X. J. (2016). Thermal calibration procedure and thermal characterisation of low-cost inertial measurement units. The Journal of Navigation, 69, 373390.CrossRefGoogle Scholar
Wang, Y. J., Hu, X. P., Zhang, L. L. and He, X. F. (2017). Polarized light compass-aided visual-inertial navigation under foliage environment. IEEE Sensors Journal, 17, 56465653.CrossRefGoogle Scholar
Waterman, T. H. (1954). Polarization patterns in submarine illumination. Science, 120, 927932.CrossRefGoogle ScholarPubMed
Waterman, T. H. (2006). Reviving a neglected celestial underwater polarization compass for aquatic animals. Biological Reviews, 81, 111115.CrossRefGoogle ScholarPubMed
Wu, T., Tao, C. H., Zhang, J. H. and Liu, C. (2018). Correction of tri-axial magnetometer interference caused by an autonomous underwater vehicle near-bottom platform. Ocean Engineering, 160, 6877.Google Scholar
Xian, Z. W., Hu, X. P., Lian, J. X., Zhang, L. L., Cao, J. L., Wang, Y. J. and Ma, T. (2014). A novel angle computation and calibration algorithm of bio-inspired sky-light polarization navigation sensor. Sensors, 14, 1706817088.CrossRefGoogle ScholarPubMed
Xian, Z. W., Hu, X. P. and Lian, J. X. (2015). Fusing stereo camera and low-cost inertial measurement unit for autonomous navigation in a tightly-coupled approach. The Journal of Navigation, 68, 434452.CrossRefGoogle Scholar
Yang, J., Du, T., Liu, X., Niu, B. and Guo, L. (2019). Method and implementation of a bioinspired polarization-based attitude and heading reference system by integration of polarization compass and inertial sensors. IEEE Transactions on Industrial Electronics, 67, 98029812.CrossRefGoogle Scholar
Yang, J., Liu, X., Zhang, Q., Du, T. and Guo, L. (2020). Global autonomous positioning in GNSS-challenged environments: A bio-inspired strategy by polarization pattern. IEEE Transactions on Industrial Electronics, Early Access, doi:10.1109/TIE.2020.2994883Google Scholar
Zhou, G. H., Wang, J. W., Xu, W. J., Zhang, K. and Ma, Z. Q. (2017). Polarization patterns of transmitted celestial light under wavy water surfaces. Remote Sensing, 9, 324.CrossRefGoogle Scholar