Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-16T11:19:26.622Z Has data issue: false hasContentIssue false

Adaptive celestial positioning for the stationary Mars rover based on a self-calibration model for the star sensor

Published online by Cambridge University Press:  17 August 2021

Yinhu Zhan*
Affiliation:
Information Engineering University, Zhengzhou, China.
Shaojie Chen
Affiliation:
National Time Service Centre, Chinese Academy of Sciences, Xian, China. University of Chinese Academy of Sciences, Beijing, China
Xu Zhang
Affiliation:
Information Engineering University, Zhengzhou, China.
*
*Corresponding author. E-mail: [email protected]

Abstract

This paper proposes a method for self-calibrating the star sensor on the Mars rover considering several years of exploration on the surface of Mars. The natural stars in the night sky are considered the control points, and a self-calibration model is deduced in detail according to an imaging model. An adaptive celestial positioning (ACP) algorithm is then introduced, and the calculation procedure is presented in detail to realise self-adjustment based on the self-calibration of the star sensor. Three field tests were conducted on Earth, the results of which show good self-calibration and celestial positioning performances. The positioning results indicate an obvious accuracy improvement using the ACP algorithm compared with that without calibration. Multiple positionings in one night can improve the celestial positioning accuracy to approximately 15 m. For future studies, this self-calibration model will be useful not only for star sensors but also for other optical sensors, such as sun sensors and binocular or stereo-vision cameras.

Type
Research Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of The Royal Institute of Navigation

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ali, K. S., Vanelli, C. A., Biesiadecki, J. J., Maimone, M. W., Cheng, Y., Martin, M. S. and Alexander, J. W. (2005). Attitude and Position Estimation on the Mars Exploration Rovers. IEEE International Conference on Systems, Man and Cybernetics. The Big Island, Hawaii, USA.10.1109/ICSMC.2005.1571116CrossRefGoogle Scholar
Bangert, J., Puatua, W., Kaplan, G., Bartlett, J. and Monet, A. (2009). User's Guide to NOVAS Version C3.0. U.S. Naval Observatory, Washington, DC.Google Scholar
Cozman, F. and Krotkov, E. (1995). Robot Localization Using a Computer Vision Sextant. IEEE International Conference on Robotics and Automation, Vol. 1. Nagoya, Aichi, Japan, pp. 106111.10.1109/ROBOT.1995.525271CrossRefGoogle Scholar
Dachev, Y. and Panov, A. (2017). 21st Century Celestial Navigation Systems. In: 18th Annual General Assembly, IAMU, Varna.Google Scholar
Di, K., Xu, F., Wang, J., Agarwal, S., Brodyagina, E. and Li, R. (2008). Photogrammetric processing of rover imagery of the 2003 Mars exploration rover mission. ISPRS Journal of Photogrammetry & Remote Sensing, 63(2), 181201.10.1016/j.isprsjprs.2007.07.007CrossRefGoogle Scholar
Eisenman, A. R., Liebe, C. C. and Perez, R. (2002). Sun Sensing on the Mars Exploration Rovers. In Proceedings of the IEEE Aerospace Conference, Vol. 5, pp. 22492262.10.1109/AERO.2002.1035391CrossRefGoogle Scholar
Enright, J., Barfoot, T. and Soto, M. (2012). Star Tracking for Planetary Rovers. In Proceedings of the IEEE International Conference on Aerospace.10.1109/AERO.2012.6187042CrossRefGoogle Scholar
Gammell, J. D., Tong, C. H., Berczi, P., Anderson, S., Barfoot, T. D. and Enright, J. (2013). Rover Odometry Aided by a Star Tracker. In Proceedings of the IEEE Aerospace Conference, pp.110.10.1109/AERO.2013.6496953CrossRefGoogle Scholar
Gong, W. (2015). Discussions on localization capabilities of MSL and MER rovers. Annals of GIS, 21(1), 6979.10.1080/19475683.2014.992367CrossRefGoogle Scholar
Hirt, C. and Seeber, G. (2008). Accuracy analysis of vertical deflection data observed with the Hannover Digital Zenith Camera System TZK2-D. Journal of Geodesy, 82(6), 347356.10.1007/s00190-007-0184-7CrossRefGoogle Scholar
Lambert, A., Furgale, P., Barfoot, T. D. and Enright, J. (2011). Visual Odometry Aided by a Sun Sensor and Inclinometer. In Proceedings of the IEEE Aerospace Conference, Big Sky, MT.10.1109/AERO.2011.5747268CrossRefGoogle Scholar
Lambert, A., Furgale, P., Barfoot, T. D. and Enright, J. (2012). Field testing of visual odometry aided by a sun sensor and inclinometer. Journal of Field Robotics, 29(3), 426444.10.1002/rob.21412CrossRefGoogle Scholar
Li, C. H., Zheng, Y., Zhang, C., Yuan, Y. L., Lian, Y. Y. and Zhou, P. Y. (2014). Astronomical vessel position determination utilizing the optical super wide angle lens camera. Journal of Navigation, 67(4), 633649.10.1017/S0373463314000058CrossRefGoogle Scholar
Maimone, M., Cheng, Y. and Matthies, L. (2007). Two years of visual odometry on the Mars exploration rovers. Journal of Field Robotics, 24(3), 169186.10.1002/rob.20184CrossRefGoogle Scholar
Muhammad, I., Beomjin, H., Kuk, C., Seung-Ho, B. and Sangdeok, P. (2016). Integrated navigation system design for micro planetary rovers: Comparison of absolute heading estimation algorithms and nonlinear filtering. Sensors, 16(5), 749775.Google Scholar
Ning, X., Liu, L., Fang, J. and Wu, W. (2013). Initial position and attitude determination of lunar rovers by INS/CNS integration. Aerospace Science & Technology, 30(1), 323332.10.1016/j.ast.2013.08.017CrossRefGoogle Scholar
Olson, C. F., Matthies, L. H., Schoppers, M. and Maimone, M. W. (2003). Rover navigation using stereo ego-motion. Robotics and Autonomous Systems, 43(4), 215229.10.1016/S0921-8890(03)00004-6CrossRefGoogle Scholar
Perryman, M., Lindegren, L., Kovalevsky, J., Høg, E., Bastian, U., Bernacca, P. L., Crézée, M., Donati, F., Grenon, M., Grewing, M., Leeuwen, F., Marel, H., Mignard, F., Murray, C. A., Le Poole, R. S., Schrijver, H., Turon, C., Arenou, F., Froeschlé, M. and Petersen, C. S., (1997). The hipparcos catalogue. Astronomy and Astrophysics, 323(1), 4952.Google Scholar
Schack, P., Hirt, C., Hauk, M., Featherstone, W. E., Lyon, T. J. and Guillaume, S. (2018). A high-precision digital astrogeodetic traverse in an area of steep geoid gradients close to the coast of Perth, Western Australia. Journal of Geodesy, 92(10), 111.CrossRefGoogle Scholar
Shi, C., Zhang, C., Du, L., Li, J., Ye, K., Zhang, W., Chen, C., Li, C., Ma, L., Lin, H. and Mi, K. (2020). Automatic astronomical survey method based on video measurement robot. Journal of Surveying Engineering, 146(2), 112.10.1061/(ASCE)SU.1943-5428.0000300CrossRefGoogle Scholar
Sun, T., Xing, F. and You, Z. (2013). Optical system error analysis and calibration method of high-accuracy star tracker. Sensors, 13(4), 45984623.10.3390/s130404598CrossRefGoogle Scholar
Wei, X., Zhang, G., Fan, Q., Jiang, J. and Li, J. (2014). Star sensor calibration based on integrated modelling with intrinsic and extrinsic parameters. Measurement, 55(9), 117125.10.1016/j.measurement.2014.04.026CrossRefGoogle Scholar
Wei, X., Cui, C., Wang, G. and Wan, X. (2019). Autonomous positioning utilizing star sensor and inclinometer. Measurement, 131, 132142.10.1016/j.measurement.2018.08.061CrossRefGoogle Scholar
Xiong, K., Wei, X., Zhang, G. and Jiang, J. (2015). High-accuracy star sensor calibration based on intrinsic and extrinsic parameter decoupling. Optical Engineering, 54(3), 034112.10.1117/1.OE.54.3.034112CrossRefGoogle Scholar
Yang, P., Xie, L. and Liu, J. (2014). Simultaneous celestial positioning and orientation for the lunar rover. Aerospace Science & Technology, 34(4), 4554.10.1016/j.ast.2011.07.003CrossRefGoogle Scholar
Yao, J., Han, B. and Yang, Y. (2006). Applications of Rodrigues matrix in 3D coordinate transformation. Geomatics and Information Science of Wuhan University, 31(12), 10941096.Google Scholar
Zhan, Y., Zheng, Y. and Zhang, C. (2016). Astronomical azimuth determination by lunar observations. Journal of Surveying Engineering, 142(2), 04015009.10.1061/(ASCE)SU.1943-5428.0000158CrossRefGoogle Scholar
Zhan, Y., Zhang, C. and Shi, C. (2018a). Absolute Positioning Based on the Sun for Mars Rover. In: 2018 IEEE CSAA Guidance, Navigation and Control Conference, Xiamen, China.10.1109/GNCC42960.2018.9019054CrossRefGoogle Scholar
Zhan, Y. H., Chen, S. J. and He, D. H. (2018b). High-precision heading determination based on the sun for Mars rover. Advances in Astronomy, 2018, 114.10.1155/2018/1493954CrossRefGoogle Scholar
Zhan, Y., Zheng, Y., Li, C., Wang, R., Zhu, Y. and Chen, Z. (2020). High-accuracy absolute positioning for the stationary planetary rover by integrating the star sensor and inclinometer. Journal of Field Robotics, 37, 10631076.10.1002/rob.21944CrossRefGoogle Scholar
Zhang, C. (2009). System-level development and application research on astronomic surveying system based on electronic theodolites. PhD thesis, Zhengzhou Institute of Surveying and Mapping, Zhengzhou, China.Google Scholar
Zhang, C., Yang, Y., Zhang, H. and Cai, X. (2020). The stellar-INS navigation performance influence mechanism of star vector orientation in the field of view. Journal of Navigation, 74(1), 113.Google Scholar