Published online by Cambridge University Press: 19 May 2020
In maritime search and rescue (SAR), commanders need to understand the task execution efficiency of each SAR unit in real time to improve the overall efficiency of SAR efforts. This study proposes a method to evaluate the progress of maritime SAR missions using automatic identification system (AIS) data. First, the positioning accuracy of the AIS data was improved according to the relationship between position, speed, and course. Second, the historical track of the SAR ship was used to generate the SAR completion area based on a line buffer algorithm. The SAR completion area and SAR mission area were then superimposed to determine the overall progress of the SAR mission. The proposed method has been deployed within the SAR software on-board Haixun01 (China's largest and most advanced large-scale cruise rescue ship) since 2017 and has played an important role in devising SAR strategies and tracking mission progress, during several SAR actions.