Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-25T04:40:08.309Z Has data issue: false hasContentIssue false

Improving Pulse Phase Estimation Accuracy with Sampling and Weighted Averaging

Published online by Cambridge University Press:  05 February 2019

Haoye Lin
Affiliation:
(School of Astronomy and Space Science, Nanjing University, Nanjing 210023, China)
Bo Xu*
Affiliation:
(School of Aeronautics and Astronautics, Sun Yet-sen University, Guangzhou 510006, China)

Abstract

The accuracy in an X-ray pulsar-based navigation system depends mainly on the accuracy of the pulse phase estimation. In this paper, a novel method is proposed which combines an epoch folding process and a cross-correlation method with the idea of “averaging multiple measurements”. In this method, pulse phase is estimated multiple times on the sampled subsets of arriving photons' time tags, and a final estimation is obtained as the weighted average of these estimations. Two explanations as to how the proposed method can improve accuracy are provided: a Signal to Noise Ratio (SNR)-based explanation and an “error-difference trade-off” explanation. Numerical simulations show that the accuracy in pulse phase estimation can be improved with the proposed algorithm.

Type
Research Article
Copyright
Copyright © The Royal Institute of Navigation 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

D'Amico, N., Kaspi, V. M., Manchester, R. N., Camilo, F., Lyne, A. G., Possenti, A, Stairs, I. H, Kramer, M., Crawford, F. and Bell, J. F. (2001). Two young radio pulsars coincident with egret sources. Astrophysical Journal, 552(1), L45.10.1086/320264Google Scholar
Emadzadeh, A. A., Golshan, A. R. and Speyer, J. L. (2009). Consistent Estimation of Pulse Delay for X-ray Pulsar Based Relative Navigation. Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference, Shanghai, 2009.10.1109/CDC.2009.5399706Google Scholar
Emadzadeh, A. A. and Speyer, J. L. (2010). On modelling and pulse phase estimation of X-ray pulsars. IEEE Transactions on Signal Processing, 58(9), 44844495.10.1109/TSP.2010.2050479Google Scholar
Emadzadeh, A. A. and Speyer, J. L. (2011a). X-Ray Pulsar-Based Relative Navigation using Epoch Folding. IEEE Transactions on Aerospace and Electronic Systems, 47(4), 23172328.10.1109/TAES.2011.6034635Google Scholar
Emadzadeh, A. A. and Speyer, J. L. (2011b). Navigation in Space by X-ray Pulsars. Springer New York Dordrecht Heidelberg London.10.1007/978-1-4419-8017-5Google Scholar
Hill, K., Lo, M. W. and Born, G. H. (2005a). Linked, Autonomous Interplanetary Satellite Orbit Navigation (LiAISON). Paper AAS 05-399, AAS/AIAA Astrodynamics Specialist Conference, Lake Tahoe, CA.Google Scholar
Hill, K., Born, G. H. and Lo, M. W. (2005b). Linked, Autonomous, Interplanetary Satellite Orbit Navigation (LiAISON) in Lunar Halo Orbits. Paper AAS 05–400, AAS/AIAA Astrodynamics Specialist Conference, Lake Tahoe, CA.Google Scholar
Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables. Publications of the American Statistical Association, 58(301), 1330.10.1080/01621459.1963.10500830Google Scholar
Lin, H. and Xu, B. (2015). A Discrete Fourier Transformation-based Method for Phase Delay Estimation in X-ray Pulsar Navigation. The Journal of Navigation, 68(5), 989998.10.1017/S0373463315000284Google Scholar
Liu, J., Fang, J., Wu, J. and Kang, Z. (2014). Fast non-linearly constrained least square joint estimation of position and velocity for x-ray pulsar-based navigation. Radar Sonar & Navigation IET, 8(9), 11541163.10.1049/iet-rsn.2013.0314Google Scholar
Liu, J., Wu, J., Xiong, L., Fang, J. and Liu, G. (2017). Fast position and velocity determination for pulsar navigation using NML and LSM. Chinese Journal of Electronics, 26(6), 13251329.10.1049/cje.2017.09.005Google Scholar
Manchester, R. N., Hobbs, G. B., Teoh, A., and Hobbs, M. (2005). The Australia Telescope National Facility Pulsar Catalogue. Astronomical Journal, 129(4), 1993.10.1086/428488Google Scholar
Proakis, J. G. and Manolakis, D. K. (1996). Digital signal processing: principles, algorithms and applications: International Edition. PearsonGoogle Scholar
Riedel, J. E., Bhaskaran, S., Synnott, S. P., Desai, S. D., Bollman, W. E., Dumont, P. J., Halsell, C. A., Han, D., Kennedy, B. M., Null, G. W. Owen, W. M. Jr., Werner, R. A. and Williams, B. G. (1997). Navigation for the new millennium: Autonomous navigation for Deep-Space 1. Space Flight Dynamics, 403, 303.Google Scholar
Rinauro, S., Colonnese, S. and Scarano, G. (2013). Fast near-maximum likelihood phase estimation of X-ray pulsars. Signal Processing, 93(1), 326331.10.1016/j.sigpro.2012.07.002Google Scholar
Sala, J., Urruela, A., Villares, X., Estalella, R. and Paredes, J. M. (2004). Feasibility Study for a Spacecraft Navigation System relying on Pulsar Timing Information. Final Report, ESA Advanced Concepts Team, ARIADNA Study 03/4202, 2004.Google Scholar
Sheikh, S. I. (2005). The use of variable celestial X-ray sources for spacecraft navigation. Doctoral DissertationGoogle Scholar
Sheikh, S. I., Pines, D. J., Ray, P. S., Wood, K. S., Lovellette, M. N. and Wolff, M. T. (2006). Spacecraft navigation using X-ray pulsars. Journal of Guidance, Control, and Dynamics, 29(1), 4963.10.2514/1.13331Google Scholar
Synnott, S., Donegan, A., Riedel, J. and Stuve, J. (1986). Interplanetary optical navigation -Voyager Uranus encounter. In Astrodynamics Conference, Williamsburg, Virginia, August 18–20, 2113.10.2514/6.1986-2113Google Scholar
Winternitz, L. M., Hassouneh, M. A., Mitchell, J. W., Valdez, J. E., Price, S. R., Semper, S. R., Yu, W. H., Ray, P. S., Wood, K. S., Arzoumanian, Z. and Gendreau, K. C. (2015). X-ray pulsar navigation algorithms and testbed for SEXTANT. In Aerospace Conference, Big Sky, Montana, USA, IEEE, 1–14.10.1109/AERO.2015.7118936Google Scholar
Winternitz, L. M., Mitchell, J. W., Hassouneh, M. A., Valdez, J. E., Price, S. R., Semper, S. R. and Gendreau, K. C. (2016). SEXTANT X-ray Pulsar Navigation demonstration: Flight system and test results. In Aerospace Conference, Big Sky, Montana, USA, IEEE, 1–11.10.1109/AERO.2016.7500838Google Scholar
Xue, M., Li, X., Sun, H. and Fang, H. (2016). A fast pulse phase estimation method for X-ray pulsar signals based on epoch folding. Chinese Journal of Aeronautics, 29(3), 746753.10.1016/j.cja.2016.03.005Google Scholar
Yu, H., Xu, L., Feng, D., He, X. and Ye, X. (2015). A Sparse Representation-based Optimization Algorithm for Measuring the Time Delay of Pulsar Integrated Pulse Profile. Aerospace Science and Technology, 46, 94103.10.1016/j.ast.2015.06.016Google Scholar
Zhang, H., Xu, L. and Xie, Q. (2011). Modeling and Doppler Measurement of X-ray Pulsar. Science China Physics, Mechanics and Astronomy, 54(6), 10681076.10.1007/s11433-011-4338-5Google Scholar
Zhang, H. and Xu, L. (2011). An improved phase measurement method of integrated pulse profile for pulsar. Science China Technological Sciences, 54(9), 22632270.10.1007/s11431-011-4524-8Google Scholar
Zhang, H., Xu, L. P., Jiao, R., Shen, Y. H. and Sun, J. R. (2014). A Direct Phase Estimation Method of X-ray Pulsar Signal Without Epoch Folding. In China Satellite Navigation Conference (CSNC) 2014 Proceedings: Volume III (691–702). Springer Berlin Heidelberg.Google Scholar
Zhang, L. and Xu, B. (2014). A Universe Light House — Candidate Architectures of the Libration Point Satellite Navigation System. Journal of Navigation, 67(5), 737752.10.1017/S0373463314000137Google Scholar
Zhang, L. and Xu, B. (2015). Navigation performance of the libration point satellite navigation system in cislunar space. The Journal of Navigation, 68(2), 367382.10.1017/S0373463314000617Google Scholar
Zheng, S. J., Ge, M. Y., Han, D. W., Wang, W. B., Chen, Y., Lu, F. J., Bao, T. W., Chai, J. Y., Dong, Y. W., Feng, M. Z. and He, J. J. (2017). Test of pulsar navigation with POLAR on TG-2 spacelab. SCIENTIA SINICA Physica, Mechanica & Astronomica, 47(9), 099505.10.1360/SSPMA2017-00080Google Scholar