Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-10T06:47:56.117Z Has data issue: false hasContentIssue false

From Two-Star Instruments to Modern Star Trackers

Published online by Cambridge University Press:  23 November 2009

Extract

For a long while now positions on the surface of the Earth have been fixed by observing the altitudes of two heavenly bodies. The equations:

include on their left-hand side two observed zenith distances and on their right-hand sides the required values of latitude and longitude. The history of celestial navigation records many different solutions to the problem, one of them being the observation of equal altitudes of the same body east and west of the meridian, usually the Sun, or of two different stars. If only the local time is required it is not even necessary to measure the exact altitude.

Type
‘Two Centuries of Navigation’
Copyright
Copyright © The Royal Institute of Navigation 1977

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Weems, P. V. H. (1957). One-body-fix, U.S. Naval Institute Proceedings, June.Google Scholar
2Herrick, S. (1946). Instrumental solutions in celestial navigation, Navigation (U.S.), 1, 22.Google Scholar
3Coignet, M. (1581). Instruction nouvelle de points plus excellents et necessaires, Tuchent I'an de navigation, Anvers.Google Scholar
4Wolf, M. (1910). Zur Onsbestimmung im Lujtschiff, Sitzungsberichte Akademie Heidelberg.Google Scholar
5Thorner, W. (1933). Verfahren und Vorrichtung zum Ansteuern eines durch seine geogr., Breite und Länge gegebenen Ortes, DRP 749 438 Kl. 42c, Gr. 3901, Patentiert 28, 12, Berlin.Google Scholar
6DBP 122 2691 Kl. 42c, Gr. 3901 (1961). Navigations-gerät &c, Patentiert 1, 12, R. V. Wagoner, Jr. and E. G. Colien.Google Scholar
7Claret, R. (1956). Un appareil permettant par simple vue la déetermination du point et du Nord, Gèogr. Navigation (Paris), 4, 20.Google Scholar
8Chamagne, J. (1959). Appareil pour faire le point astronomique sans calcul, Navigation (Paris), 7, 270.Google Scholar
9Fox, W. A. W. (1952). Multistar sextant. This Journal, 5, 80.Google Scholar
10Kaster, B. (1930). The Spherant, Hydrographic Revue, Monaco, 8, 2, 144. DRP 564 997 Kl. 42c, Gr. 3901, 24, 9.Google Scholar
11DBP 900 143, Kl. 42c, Gr. 3901 (1936 and 1953). Fernrohr. Patentiert 10, 5, Neu patentiert 12,3.Google Scholar
12Benfield, C. W. (1964-1965). Automated marine navigation, Navigation (U.S.), 11, 353.Google Scholar
13Schmieder, L. (1964). Verfahren zur Sternbilderkennung in Raumfahrzeugen, DBP 144 8564, Kl. 42c, Gr. 3901, Patentiert 4, 11, Neu-Gilching. Also Poubeau, P. Verfahren und Einrichtung zur Lagebestimmung eines optischen Gerätes im Raum, BDP 177 3219 Kl. 42c, Gr. 3901, Patentiert 17, 4, Gif-sur-Yvette.Google Scholar
14Kohlhase, C. E. (1975). Autonomous navigation preparation for future unmanned space missions, Navigation (U.S.), 22, 16.CrossRefGoogle Scholar