Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-24T05:34:15.779Z Has data issue: false hasContentIssue false

Functional Localization in the Thalamus and Hypothalamus.∗

Published online by Cambridge University Press:  19 February 2018

W. E. Le Gros Clark*
Affiliation:
University of Oxford

Extract

The sensory material which provides the essential data for conscious activity is conveyed to the higher functional levels of the brain by impulses which stream up the olfactory tracts, the optic tracts, and the tracts of the brain-stem and spinal cord. With the exception only of the olfactory impulses, all these sensory impulses are filtered through the thalamic region of the brain, or diencephalon, before they can be relayed to the cerebral cortex which forms the anatomical substratum of the more elaborate mental processes. It is an interesting fact that, while the functional localization in the cerebral cortex and the functional localization in regard to the numerous fibre tracts in the brain-stem and spinal cord have been established in quite considerable detail by anatomical, physiological and clinical studies extending over many years, the localization and the connections of the various relay mechanisms in the diencephalon still remain obscure. Since the nature of the sensory material which is delivered to the cerebral cortex depends ultimately on the influences and modifications which may be imposed on the afferent impulses during their passage through the diencephalon, it becomes a matter of extreme importance, from the point of view of the study of the physiology of sensation and of psychological interpretation of sensory experience, that attention should be concentrated on this diencephalic mechanism. The minute anatomy of the diencephalon has recently been worked out in great detail, and it is now the task of the anatomist, physiologist and clinician to discover the functional significance of the numerous cell groups and fibre tracts which have been defined.

Type
Part I.—Original Articles
Copyright
Copyright © Royal College of Psychiatrists, 1936 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Basir, M. A., “The Vascular Supply of the Pituitary Body in the Dog”, Journ. Anat., 1932, lxvi, p. 387.Google Scholar
2 Beattie, J., “Hypothalamic Mechanisms”, Canad. Med. Assoc. Journ., 1932, xxvi, p. 400.Google Scholar
3 Idem , Brow, G. R., and Long, C. N. H., “Physiological and Anatomical Evidence for the Existence of Nerve Tracts Connecting the Hypothalamus with Spinal Sympathetic CentresProc. Roy. Soc., b, 1930, cvi p. 253.Google Scholar
4 Broers, H., “Experimentelle Diabetes Insipidus”, Dissert. Utrecht, 1932.Google Scholar
5 Brouwer, B., “Experimentellanatomische Untersuchungen über die Projektion der Retina auf die Primären Opticuszentren”, Schweiz. Arch. f. Neur. u. Psych., 1923, xiii, p. 65.Google Scholar
6 Clark, W. E. Le Gros, “The Structure and Connections of the Thalamus”, Brain, 1932, lv, p. 406.Google Scholar
7 Idem , “An Experimental Study of Thalamic Connections in the Rat”, Phil. Trans., 1932, ccxxii, series b, p. 1.Google Scholar
8 Idem , “The Medial Geniculate Body and the Nucleus Isthmi”, Journ. Anat., 1933, lxvii, p. 536.Google Scholar
9 Idem , “The Topography and Homologies of the Hypothalamic Nuclei in Man”, ibid. (in the press).Google Scholar
10 Idem, and Boggon, R. H., “The Anterior Nucleus of the Thalamus”, ibid., 1933, lxvii, p. 215.Google Scholar
11 Idem , “The Connections of the Medial Cell Group of the Thalamus”, Brain, 1933, lv, p. 83.Google Scholar
12 Idem , “Thalamic Connections in the Brain of the Monkey”, Phil. Trans., 1935, ccxxiv, series b, p. 536.Google Scholar
13 Clark, W. E. Le Gros, and Penman, G. G., “The Projection of the Retina in the Lateral Geniculate Body”, Proc. Roy. Soc, b, 1934, cxiv p. 291.Google Scholar
14 Croll, M., “Nerve Fibres in the Pituitary”, Journ. Physiol., 1928, lxvi, p. 316.Google Scholar
15 Cushing, H., “Neurohypophyseal Mechanisms from a Clinical Standpoint”, Lancet, 1930, ii, pp. 119. 175.Google Scholar
16 von Economo, C., Encephalitis Lethargica, Oxford Medical Press, 1931.Google Scholar
17 Elliot Smith, G., Essays on the Evolution of Man, Oxford, 1927.Google Scholar
18 Fisher, C, Ingram, W. R., and Ranson, S. W., “The Relation of the Hypothalamico-Hypophyseal System to Diabetes Insipidus”, Arch, of Neur. and Psychiat., 1935, xxxiv.Google Scholar
19 Friedemann, K., “Die Cytoarchitektonic des Zwischenhirns der Cercopitheken”, Journ. f. Psych, u. Neur., 1912, xviii, p. 308.Google Scholar
20 Fulton, J. F., “New Horizons in Physiology and Medicine; The Hypothalamus and Visceral Mechanisms”, New England Journ. of Med., 1932, ccvii pp. 60, 94.Google Scholar
21 Idem and Ingraham, F. D., “Emotional Disturbances following Experimental Lesions of the Base of the Brain”, Journ. Physiol., 1929, lxvii, Proc. xxvii.Google Scholar
22 Fulton, J. F., Kennard, M. A., and Watts, J. W., “Autonomic Representation in the Cerebral Cortex”, Amer. Journ. Physiol., 1934, cix.Google Scholar
23 Gaupp, R., and Scharrer, E., “Die Zwischenhirnsekretion bei Mensch und Tier”, Zeitschr. f. d. ges. Neur. u. Psych., 1935, Bd. cliii, p. 327.Google Scholar
24 Huet, E., “De Gevolgen der Extirpatie van het Ganglion supremum colli N. Sympathetici voor het Centrale Zenuwstelsel”, Dissert. Amsterdam, 1898.Google Scholar
25 Johnson, J. B., The Nervous System of Vertebrates, London, 1908.Google Scholar
26 Kabat, H., Anson, B. J., Magoun, H. W., and Ranson, S. W., “Stimulation of the Hypothalamus”, Amer. Journ. Physiol., 1935, cxii, p. 214.Google Scholar
27 Karplus, J. P., and Kreidl, A., Arch. f. d. ges. Physiol., 1909, cxxix.Google Scholar
28 Idem , “Gehirn und Sympathetica. III, Mitt. Sympatheticusleitung im Gehirn und Halsmark”, Pflüger's Arch., 1911, cxliii, p. 109.Google Scholar
29 Kary, C., “Pathologische-anatomische und Experimentelle Untersuchungen zur Frage des Diabetes Insipidus”, Virchow's Arch. f. Path. Anat., 1924, cclii, p. 734.Google Scholar
30 Krieg, W. J. S., “The Hypothalamus of the Albino Rat”, Journ. Comp. Neur., 1932, v, p. 19.Google Scholar
31 Idem , personal communication.Google Scholar
32 Mettler, F. A., “Connections of the Cortex in Macaca”, Journ. Comp. Neur., 1935, lxi, p. 509.CrossRefGoogle Scholar
33 Morgan, L. O., and Gregory, H. S., “Pathological Changes in the Tuber Cinereum”, Journ. Nerv, and Ment. Dis., 1935, lxxxii, p. 286.Google Scholar
34 Pines, J. L., “Über die Innervation der Hypophysis Cerebri”, Zeitschr. f. d. ges. Neur. u. Psych., 1925, Bd. c, p. 123.Google Scholar
35 Poliak, S., “A Contribution to the Cortical Representation of the Retina”, Journ. Comp. Neur., 1933, lvii, p. 541.Google Scholar
36 Popa, and Fielding, U., “The Vascular Link between the Pituitary and the Hypothalamus”, Lancet, 1930, ii, p. 238.Google Scholar
37 Idem , “The Portal Circulation from the Pituitary to the Hypothalamus”, Journ. Anat., 1930, lxv, p. 88.Google Scholar
38 Ranson, S. W., Trans. Coll. Phys. Philadelphia, 1934, ii, 4th series, p. 222.Google Scholar
39 Idem and Ingram, W. R., “The Diencephalic Course and Termination of the Medial Lemniscus and the Brachium Conjunctivum”, Journ. Comp. Neur., 1932, lvi, p. 257.Google Scholar
40 Ranson, S. W., and Magoun, H. W., “Respiratory and Pupillary Reactions Induced by Electrical Stimulation of the Hypothalamus”, Arch, of Neur. and Psychiat., 1933, xxix, p. 1179.Google Scholar
41 Richter, C. P., “Experimental Diabetes Insipidus”, Brain, 1930, liii, p. 76.Google Scholar
42 Rioch, D. M., “Studies on the Diencephalon of Carnivora”, Journ. Comp. Neur., 1931, liii, p. 319.Google Scholar
43 Roussy, G., and Mosinger, M., “Étude Anatomique et Physiologique de l'Hypothalamus”, Rev. Neurol., 1934, t. i, p. 848.Google Scholar
44 Urechia, C, and Nitescu, I., “Le Rôle des Noyaux du Tuber cinereum dans la Diabète experimentelle”, Bull. de l'Acad. de Méd., 1925, xciii–xciv, p. 188.Google Scholar
45 Walker, A. E., “The Thalamic Projection to the Central Gyri in Macacus”, Journ. Comp. Neur., 1934, lx, p. 161.Google Scholar
46 Idem , “Retrograde Degeneration in the Thalamus following Hemi-decortication”, ibid., 1935, lxii, p. 407.Google Scholar
47 Wallenberg, A., “Bemerkenswerte Endstatten der Grosshirnfaserung bei Säugern”, Jahrb. f. Psych. u. Neur., 1933, Bd. li, p. 295.Google Scholar
Submit a response

eLetters

No eLetters have been published for this article.