No CrossRef data available.
Published online by Cambridge University Press: 01 December 2014
This paper introduces a unique, efficient, and exact formulation for solving a single-degree-of-freedom system with nonlinear stiffness under a harmonic loading. This formulation is one kind of the piecewise exact method, and its benefit lies in providing the closed-form exact solution in each displacement segment. Since the exact solution is given in each segment, the continuity between two segments can be confirmed. Consequently, no instability errors affect the analysis. To determine the exact solutions in these segments, this research develops a technique that shifts the equilibrium points of the piecewise linear segments, which are discretized from a nonlinear stiffness curve, to new equilibrium points in order to satisfy the typical linear exact solution. Thus, positive- and negative-stiffness linear segments can be solved with this technique. This formulation saves roughly 60% of the calculation time (error < 10−10) as compared to the numerical approximation.