Published online by Cambridge University Press: 05 May 2011
The evolutionary structural optimization method is improved and extended to elastic-plastic topology optimization for the first time. An adaptive rejection ratio is proposed to control the number of removal elements without destroying the symmetric pattern in each evolution. Two performance indices suitable for elastic-plastic topology optimization are also proposed and examined. The performance indices can be used to investigate the material efficiency of structures in different evolutionary stages, and to serve as stop criteria in the evolutionary process. Moreover, an interactive special purpose computer analysis and graphics system is developed to visualize the topology in the evolutionary process. Finally, the effects of yield stress, Young's modulus, and the prescribed displacement in an elastic-plastic analysis on the obtained topology are discussed.