Published online by Cambridge University Press: 05 May 2011
An experimental study of thermosolutal convection in an inclined rectangular enclosure with a partition is presented in this article. Aspect ratio, partition ratio, and inclination angle were kept constant at Ar =0.5, Ap = 0.25 and φ = 30°, respectively. The convective flow is generated by both inclined temperature and concentration gradients under limiting current condition. Both the thermal and solutal buoyancies, which either cooperated or opposed one another, were induced from the copper plates. The temperature gradient was maintained and controlled using two separate constant temperature baths that circulated heated or cooled water through a heat exchanger. We used copper sulphate-sulfuric acid solution as both the working fluid and the electrolyte. An electrochemical method based on a diffusion-controlled electrode reaction was employed to create the concentration gradient. We used the shadowgraph recording technique to visualize and analyze the flow field phenomenon. Thermal Grashof numbers ranging from 8.16 × 105 to 16.32 × 105 and a solutal Grashof number Grm = 4.36 × 106 were investigated. It is demonstrated that the mass transfer rate increases with the increasing thermal Grashof numbers within our experimental ranges. Multilayer structures are found in the cooperating case or the opposing case.