Published online by Cambridge University Press: 05 May 2011
Without knowing the dynamic constitutive relation of materials under high strain rates, no wave propagation can be correctly analyzed. A Series of experimental and theoretical investigation at high strain rates revealed that the nonlinear viscoelastic behavior of polymers and the related composites are well described by the Zhu-Wang-Tang (ZWT) nonlinear viscoelastic constitutive equation. The impulsive reponse of ZWT materials consists of a rate independent nonlinear elastic response and a high frequency linear viscoelastic response. The dispersion and attenuation of nonlinear viscoelastic waves mainly depend on the effective nonlinearity and the high frequency relaxation time θ2. An “effective influence distance” or “effective influence time” is defined to characterize the wave propagation range where θ2 dominates the impact relaxation process.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.