No CrossRef data available.
Article contents
Solar Radiation Assisted Mixed Convection Flow Along a Vertical Plate
Published online by Cambridge University Press: 05 June 2014
Abstract
Solar radiation assisted mixed convection boundary layer flow of Newtonian fluid along a non- reflecting, non-absorbing and ideally transparent semi-infinite vertical plate is studied here. Beer's law is used to express the solar radiation term. It is convenient to transform the non-linear dimensionless parabolic partial differential equations into (i) primitive variable formulation (PVF) and (ii) stream function formulation (SFF) before applying the numerical schemes. Coupled equations thus obtained from PVF are integrated numerically through implicit finite difference method together with the Gaussian elimination technique whereas block tridiagonal Keller-box technique is adopted to simulate the system of equations obtained from SFF. Numerical results from these two methods are also compared graphically in order to test the validation of the two schemes. However, due to less computation time and accuracy numeric results of shear stress, local Nusselt number coefficient, velocity and temperature profiles are obtained via SFF. It is found that velocity as well as temperature of the non-absorbing fluid enhances owing to the increase in solar radiation parameter.
- Type
- Research Article
- Information
- Copyright
- Copyright © The Society of Theoretical and Applied Mechanics, R.O.C. 2014