Published online by Cambridge University Press: 25 October 2016
Speaking is a very complex process resulting from the interaction between the air flow along the larynx and the vibrating structure of the vocal folds. Sulcus is a disease missing layers in the vocal folds result in cracks resulting in some disorders in producing sounds. Sulcus and its effects on the vocal cord vibrations are numerically studied for the first time in this paper. An ideal model of healthy vocal folds and Sulcus vocalis has been two-dimensionally defined and the finite element model of vocal folds is solved in a fully coupled form. The proposed calculative model was used in a fluid range of the computational fluid dynamics, arbitrary Lagrangian-Eulerian (ALE), incompressible continuity and Navier-Stokes equations and in a structure range of a three-layer elastic linear model. Self-excited oscillations were presented for vocal folds among type II patients and compared with healthy models. Responses were qualitatively and quantitatively studied. The healthy model was compared with numerical and empirical results. In addition, the effects of the disease on the flow parameters and the vibration frequency of the vocal folds were studied. According to the simulated model, the oscillation frequency decreased 25% and the average and instantaneous volume flux significantly increased compared to healthy samples. Results may help present a guideline for surgery and subsequently evaluate patients’ improvement.