No CrossRef data available.
Article contents
A New Look at Sylvester's Theorem in Matrix Theory
Published online by Cambridge University Press: 05 May 2011
Abstract
By diagonalizing a matrix via a similarity transformation, we provide a new and direct proof of Sylvester's theorem in matrix theory. Several known theorems are reconstructed. In some places we offer new connections which are unnoticed in the literature before.
- Type
- Articles
- Information
- Copyright
- Copyright © The Society of Theoretical and Applied Mechanics, R.O.C. 1998
References
REFERENCES
1.Hoger, A. and Carlson, D. E., “On the Derivative of the Square Root of a Tensor and Guo's Rate Theorem,” J. Elasticity, Vol. 14, pp. 329–336 (1984).CrossRefGoogle Scholar
2.Chen, T, “Exact Moduli and Bounds of Two-Phase Composites with Coupled Multifield Linear Responses,” J. Mech. Phys. Solids, Vol. 45, pp. 385–398 (1997).CrossRefGoogle Scholar
5.Horn, R. A. and Johnson, C. R., Matrix Analysis, Cambridge University Press, New York, pp. 129–132 (1985).CrossRefGoogle Scholar
6.Ting, T. C. T, “Determination of C1/2, C−1/2 and More General Isotropic Tensor Functions of C,” J. Elasticity, Vol. 15, pp. 319–323 (1985).CrossRefGoogle Scholar
7.Frazer, R. A., Duncan, W. J. and Collar, A. R., Elementary Matrices and Some Applications to Dynamics and Differential Equations, Cambridge University Press, New York, p. 83 (1960).Google Scholar