Published online by Cambridge University Press: 11 December 2015
In order to analyze the boiling and capillary limitations of two-phase heat transport devices, the existing models developed by Chi and Peterson and the existing experimental data carried out with various micro channel wick structures from literature were collected for benchmark. It was found that the dominant parameters for boiling and capillary limitations were the nucleation sites and structure geometries of the micro channels, and important parameters were considered to modify the models empirically. It was also found that for micro channel structures the inclined angle is sensitive to the capillary limitations and not to boiling limitations. By properly estimating the nucleation sites and empirical coefficients for micro channels needed by the newly modified models, the boiling and capillary limitations can be accurately predicted, and hence the applicability of the modified models is confirmed. Based on this, a numerical analysis was then carried out to investigate the trends of boiling and capillary limitations of the micro channel wick structures. Effects of the channel geometries and arrangement were taken into account, including the aspect ratio and structure size of the micro channels. Furthermore, the effects of inclined angle and contact angle were also analyzed. The present results can provide a design reference of performance trends of micro channel wick structures.