Published online by Cambridge University Press: 05 May 2011
Generally, the Force-State Mapping (FSM) is an effective method to identify the parameters of nonlinear joints provided that the joint model is exactly known in advance. However, the variation of the non-linear joints is so large that the mathematical models of non-linear joints generally are not known in advance. Therefore, the model and the parameters of a non-linear joint should be identified simultaneously in practice. In this work, a new identification procedure which was based on the FSM method in frequency domain was proposed to identify the mathematical model and parameters of a non-linear joint simultaneously. Generally, there are many feasible combinations of models and parameters which can satisfy the measurement data within an allowable range of error. In this work, an iteration procedure was used to update the feasible models to result in an optimal model with its parameters. The simulation results show that a proper mathematical model and accurate parameters can be identified simultaneously by the new procedure even that the measurement data are contaminated by noise.